【題目】已知函數(shù).

(Ⅰ)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若,求證: .

【答案】;( ;(證明見(jiàn)解析.

【解析】試題分析:求出求出的值可得切點(diǎn)坐標(biāo),求出的值,可得切線(xiàn)斜率,利用點(diǎn)斜式可得曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;(在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間; ,等價(jià)于,等價(jià)于,設(shè),只須證成立,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用單調(diào)性求出的最小值,證明最小值大于零即可得結(jié)論.

試題解析:(Ⅰ)若,,,

所以在點(diǎn)處的切線(xiàn)方程為.

,.

, (依題意)

,;,.

所以, 在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以,

因?yàn)?/span>,所以.

所以,.

所以函數(shù)的單調(diào)遞增區(qū)間為.

Ⅲ)由,等價(jià)于,

等價(jià)于.

設(shè),只須證成立.

因?yàn)?/span>

,有異號(hào)兩根.

令其正根為,.

,

的最小值為

所以

因此所以.所以.

【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線(xiàn)切線(xiàn)方程以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、證明不等式,屬于難題.求曲線(xiàn)切線(xiàn)方程的一般步驟是:(1)求出處的導(dǎo)數(shù),即在點(diǎn) 出的切線(xiàn)斜率(當(dāng)曲線(xiàn)處的切線(xiàn)與軸平行時(shí),在 處導(dǎo)數(shù)不存在,切線(xiàn)方程為);(2)由點(diǎn)斜式求得切線(xiàn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)所在平面內(nèi)一點(diǎn),下列說(shuō)法正確的是(

A.,則的形狀為等邊三角形

B.,則點(diǎn)是邊的中點(diǎn)

C.過(guò)任作一條直線(xiàn),再分別過(guò)頂點(diǎn)的垂線(xiàn),垂足分別為,若恒成立,則點(diǎn)的垂心

D.則點(diǎn)在邊的延長(zhǎng)線(xiàn)上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)數(shù)函數(shù)gx=1ogaxa0a≠1)和指數(shù)函數(shù)fx=axa0,a≠1)互為反函數(shù).已知函數(shù)fx=3x,其反函數(shù)為y=gx).

(Ⅰ)若函數(shù)gkx2+2x+1)的定義域?yàn)?/span>R,求實(shí)數(shù)k的取值范圍;

(Ⅱ)若0x1x2|gx1|=|gx2|,求4x1+x2的最小值;

(Ⅲ)定義在I上的函數(shù)Fx),如果滿(mǎn)足:對(duì)任意xI,總存在常數(shù)M0,都有-MFx)≤M成立,則稱(chēng)函數(shù)Fx)是I上的有界函數(shù),其中M為函數(shù)Fx)的上界.若函數(shù)hx=,當(dāng)m≠0時(shí),探求函數(shù)hx)在x[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱臺(tái)中, 底面,平面平面的中點(diǎn).

(1)證明: ;

(2)若,且,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

2當(dāng)時(shí),求在區(qū)間上的最大值和最小值;

3)當(dāng)時(shí),若方程在區(qū)間上有唯一解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P一ABCD中,平面PAB⊥平面ABCD, AB⊥BC, AD//BC, AD=3,PA=BC=2AB=2,

PB=

(Ⅰ)求證:BC⊥PB;

(Ⅱ)求二面角P一CD一A的余弦值;

(Ⅲ)若點(diǎn)E在棱PA上,且BE//平面PCD,求線(xiàn)段BE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),關(guān)于函數(shù)的性質(zhì),有以下四個(gè)推斷:

的定義域是

的值域是

是奇函數(shù);

是區(qū)間(0,2)內(nèi)的增函數(shù).

其中推斷正確的個(gè)數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,動(dòng)點(diǎn)到定點(diǎn)的距離與它到直線(xiàn)的距離相等.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)動(dòng)直線(xiàn)與曲線(xiàn)相切于點(diǎn),與直線(xiàn)相交于點(diǎn)

證明:以為直徑的圓恒過(guò)軸上某定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求曲線(xiàn)處的切線(xiàn)方程;

)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案