函數(shù)的最小正周期為   
【答案】分析:先利用正弦函數(shù)的差角公式進行化簡,然后利用二倍角公式和輔助角公式將其化成f(x)=Asin(ωx+φ)+B,最后根據(jù)周期公式解之即可.
解答:解:
=sinx(sinxcos-cosxsin
=sin2x-sinxcosx
=-sin2x
=-sin2x+cos2x)+
=-sin(2x+)+
T=
故答案為:π
點評:本題主要考查了三角函數(shù)的周期,解題的關(guān)鍵是二倍角公式和輔助角公式的應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=sin4x+cos4x(x∈R),則函數(shù)的最小正周期為(  )
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東莞二模)已知函數(shù)y=sinx+cosx,則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=sin(-πx-3),則函數(shù)的最小正周期為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•眉山二模)將函數(shù)y=cos(x+
π
3
)
的圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),再向左平移
π
6
個單位,所得函數(shù)的最小正周期為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=2cos(ωx+θ)(x∈R,ω>0,0≤θ≤
π
2
)的圖象與y軸相交于點M(0,
3
),且該函數(shù)的最小正周期為π.
(1)求θ和ω的值;
(2)已知點A(
π
2
,0),點P是該函數(shù)圖象上一點,點Q(x0,y0)是PA的中點,當y0=
3
2
,x0∈[
π
2
,π]時,求x0的值.

查看答案和解析>>

同步練習冊答案