19.橢圓$\frac{x^2}{4}+{y^2}=1$上的點(diǎn)到直線$x-y+5\sqrt{5}=0$的距離的最大值是3$\sqrt{10}$.

分析 設(shè)P點(diǎn)坐標(biāo)是(2cosα,sinα),(0°≤α<360°),利用點(diǎn)P到直線x-y+5$\sqrt{5}$=0的距離公式和三角函數(shù)的性質(zhì)即可求出最大值.

解答 解:設(shè)P點(diǎn)坐標(biāo)是(2cosα,sinα),(0°≤α<360°)
∴點(diǎn)P到直線x-y+5$\sqrt{5}$=0的距離d=$\frac{|2cosα-sinα+5\sqrt{5}|}{\sqrt{2}}$=$\frac{\sqrt{5}|cos(α+θ)+5|}{\sqrt{2}}$≤$\frac{6\sqrt{5}}{\sqrt{2}}$=3$\sqrt{10}$,
故答案為:3$\sqrt{10}$

點(diǎn)評(píng) 本題考查直線與橢圓的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意橢圓的參數(shù)方程、點(diǎn)到直線的距離公式、三角函數(shù)的性質(zhì)的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知集合M是同時(shí)滿足下列條件的函數(shù)f(x)的全體:①f(x)的定義域?yàn)椋?,+∞);②對(duì)任意的正實(shí)數(shù)x,都有f(x)=f(${\frac{1}{x}}$)成立.
(1)設(shè)函數(shù)f(x)=$\frac{x}{{1+{x^2}}}$(x>0),證明:f(x)屬于集合M,且存在定義域?yàn)閇2,+∞)的函數(shù)g(x),使得對(duì)任意的正實(shí)數(shù)x,都有g(shù)(x+$\frac{1}{x}}$)=f(x)成立;
(2)對(duì)于集合M中的任意函數(shù)f(x),證明:存在定義域?yàn)閇2,+∞)的函數(shù)g(x),使得對(duì)任意的正實(shí)數(shù)x,都有g(shù)(x+$\frac{1}{x}}$)=f(x)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$,
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某初級(jí)中學(xué)有學(xué)生270人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要利用抽樣方法抽取10人參加某項(xiàng)調(diào)查,考慮選用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為1,2,…,270;使用系統(tǒng)抽樣時(shí),將學(xué)生統(tǒng)一隨機(jī)編號(hào)1,2,…,270,并將整個(gè)編號(hào)依次分為10段.如果抽得號(hào)碼有下列四種情況:
①5,9,100,107,111,121,180,195,200,265,
②7,34,61,88,115,142,169,196,223,250;
③30,57,84,111,138,165,192,219,246,270;
④11,38,65,92,119,146,173,200,227,254;
關(guān)于上述樣本的下列結(jié)論中,正確的是(  )
A.②、④都可能為分層抽樣B.①、③都不能為分層抽樣
C.①、④都可能為系統(tǒng)抽樣D.②、③都不能為系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,滿足2Sn+an=1.設(shè)${a_n}=\frac{{{b_n}-n}}{2n+1}$.
(1)求:求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè){bn}的前n項(xiàng)和為Tn,求$\frac{{{T_n}+18}}{n}+\frac{n+2}{n}{(\frac{1}{3})^n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知點(diǎn)A(-1,0),B(1,0),直線AM,BM相交于M,且它們的斜率之積為2.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)若過(guò)點(diǎn)$N(\frac{1}{2},1)$的直線l交點(diǎn)M的軌跡于C,D兩點(diǎn),且N為線段CD的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線l過(guò)點(diǎn)P(3,-2)且與橢圓$C:\frac{x^2}{20}+\frac{y^2}{16}=1$相交于A,B兩點(diǎn),則使得點(diǎn)P為弦AB中點(diǎn)的直線斜率為( 。
A.$-\frac{3}{5}$B.$-\frac{6}{5}$C.$\frac{6}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.不等式logax-ln2x<4(a>0,且a≠1)對(duì)任意x∈(1,100)恒成立,則實(shí)數(shù)a的取值范圍為(0,1)∪(${e}^{\frac{1}{4}}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓:C:$\frac{{x}^{2}}{9}$+y2=1,點(diǎn)M(0,$\frac{1}{2}$).
(1)設(shè)P是橢圓C上任意的一點(diǎn),Q是點(diǎn)P關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),記λ=$\overrightarrow{MP}$•$\overrightarrow{MQ}$,求λ的取值范圍;
(2)已知點(diǎn)D(-1,-$\frac{1}{2}$),E(1,-$\frac{1}{2}$),P是橢圓C上在第一象限內(nèi)的點(diǎn),記l為經(jīng)過(guò)原點(diǎn)與點(diǎn)P的直線,s為△DEM截直線l所得的線段長(zhǎng),試將s表示成直線l的斜率k的函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案