已知平面上的動(dòng)點(diǎn)Q到定點(diǎn)F(0,1)的距離與它到定直線y=3的距離相等

(1)求動(dòng)點(diǎn)Q的軌跡C1的方程

(2)過(guò)點(diǎn)F作直線l1交C2:x2=4y于A,B兩點(diǎn)(B在第一象限),若|BF|=2|FA|,求直線l1的方程

(3)試問(wèn)在曲線C1上是否存在一點(diǎn)M,過(guò)點(diǎn)M作曲線C1的切線l2交拋物線C2于D,E兩點(diǎn),使得DF⊥EF?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

答案:
解析:

  (1)

  (2)

  (3)存在點(diǎn)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平面上定點(diǎn)F到定直線l的距離|FM|=2,P為該平面上的動(dòng)點(diǎn),過(guò)P作直線l的垂線,垂足為Q,且(
PF
+
PQ
)•(
PF
-
PQ
)=0

(1)試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線交軌跡C于A、B兩點(diǎn),交直線l于點(diǎn)N,已知
NA
=λ1
AF
,
NB
=λ2
BF
,求證:λ1+λ2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上的動(dòng)點(diǎn)Q到定點(diǎn)F(0,1)的距離與它到定直線y=3的距離相等.
(1)求動(dòng)點(diǎn)Q的軌跡C1的方程;
(2)過(guò)點(diǎn)F作直線l1交C2:x2=4y于A,B兩點(diǎn)(B在第一象限).若|BF|=2|AF|,求直線l1的方程.
(3)試問(wèn)在曲線C1上是否存在一點(diǎn)M,過(guò)點(diǎn)M作曲線C1的切線l2交拋物線C2于D,E兩點(diǎn),使得DF⊥EF?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃浦區(qū)一模)已知兩點(diǎn)A(-1,0)、B(1,0),點(diǎn)P(x,y)是直角坐標(biāo)平面上的動(dòng)點(diǎn),若將點(diǎn)P的橫坐標(biāo)保持不變、縱坐標(biāo)擴(kuò)大到
2
倍后得到點(diǎn)Q(x,
2
y
)滿足
AQ
BQ
=1

(1)求動(dòng)點(diǎn)P所在曲線C的軌跡方程;
(2)過(guò)點(diǎn)B作斜率為-
2
2
的直線l交曲線C于M、N兩點(diǎn),且滿足
OM
+
ON
+
OH
=
0
,又點(diǎn)H關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)G,試問(wèn)四點(diǎn)M、G、N、H是否共圓,若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省寧波市鎮(zhèn)海中學(xué)高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知平面上的動(dòng)點(diǎn)Q到定點(diǎn)F(0,1)的距離與它到定直線y=3的距離相等.
(1)求動(dòng)點(diǎn)Q的軌跡C1的方程;
(2)過(guò)點(diǎn)F作直線l1交C2:x2=4y于A,B兩點(diǎn)(B在第一象限).若|BF|=2|AF|,求直線l1的方程.
(3)試問(wèn)在曲線C1上是否存在一點(diǎn)M,過(guò)點(diǎn)M作曲線C1的切線l2交拋物線C2于D,E兩點(diǎn),使得DF⊥EF?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案