[n(1-)(1-)…(1-)]的值等于

[  ]

A.0
B.1
C.2
D.3
答案:C
解析:

 

           

       


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點(diǎn)與y=fn+1(x)圖象的左端點(diǎn)重合;并回答這些端點(diǎn)在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點(diǎn),試將kn表示成n的函數(shù).
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當(dāng)m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關(guān)于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實(shí)數(shù)解的個數(shù)(這里的kn是(2)中的kn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在計(jì)算“1×2+2×3+…n(n+1)”時,先改寫第k項(xiàng):
k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=
1
3
(1×2×3-0×1×2),2×3=
1
3
(2×3×4-1×2×3),..
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)

(1)類比上述方法,請你計(jì)算“1×2×3+2×3×4+…+n(n+1)(n+2)”的結(jié)果;
(2)試用數(shù)學(xué)歸納法證明你得到的等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1999年10月12日“世界60億人口日”提出了“人類對生育的選擇決定世界未來”的主題,控制人口急劇增長的緊迫任務(wù)擺在我們面前.
(1)世界人口在過去40年內(nèi)翻了一番,問每年人口平均增長率是多少?
(2)我國人口在1998年底達(dá)到12.48億,若將人口平均增長率控制在1%以內(nèi),我國人口在2003年底至多有多少億?
以下數(shù)據(jù)供計(jì)算時使用:
數(shù)N 1.010 1.015 1.017 1.310 2.000
對數(shù)lgN 0.004 3 0.006 3 0.0075 0.117 3 0.301 0
數(shù)N 3.000 5.000 1.248 1.311
對數(shù)lgN 0.477 1 0.699 0 0.096 2 0.117 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)對任意x∈R,恒有(2x+1)n=an(x+1)n+an-1(x+1)n-1+…+a1(x+1)+a0成立,則數(shù)列{an}的前n項(xiàng)和為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在計(jì)算“1×2+2×3+…n(n+1)”時,先改寫第k項(xiàng):
k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=
1
3
(1×2×3-0×1×2),2×3=
1
3
(2×3×4-1×2×3),..
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)

(1)類比上述方法,請你計(jì)算“1×2×3+2×3×4+…+n(n+1)(n+2)”的結(jié)果;
(2)試用數(shù)學(xué)歸納法證明你得到的等式.

查看答案和解析>>

同步練習(xí)冊答案