(本小題14分)已知圓C的圓心在直線上,且與直線相切,被直線截得的弦長為,求圓C的方程.

解:設(shè)圓C的圓心為,半徑為R,則有:
,解得,
即所求的圓的方程為:.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)直線(極軸與x軸的非負(fù)半軸重合,且單位長度相同)。
(1)求圓心C到直線的距離;   (2)若直線被圓C截的弦長為的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程是,圓C的極坐標(biāo)方程為
(I)求圓心C的直角坐標(biāo);
(Ⅱ)由直線上的點向圓C引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求經(jīng)過點,且與圓相切于點的圓的方程,并判斷兩圓是外切還是內(nèi)切?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分) 已知圓方程為:.
(1)直線過點,且與圓交于、兩點,若,求直線的方程;
(2)過圓上一動點作平行于軸的直線,設(shè)軸的交點為,若向量為原點),求動點的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題共9分)如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點P為線段CA(不包括端點)上的一個動點,以為圓心,1為半徑作
(1)連結(jié),若,試判斷與直線AB的位置關(guān)系,并說明理由;
(2)當(dāng)線段PC等于多少時,與直線AB相切?
(3)當(dāng)與直線AB相交時,寫出線段PC的取值范圍。
(第(3)問直接給出結(jié)果,不需要解題過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C經(jīng)過A(1,),B(5,3),并且圓的面積被直線平分.求圓C的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

拋物線的焦點與雙曲線的右焦點的連線交于第一象限的點,若在點處的切線平行于的一條漸近線,則(  )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過點的直線l將圓分成兩段弧,當(dāng)劣弧所對的圓心角最小時,求直線l的斜率。

查看答案和解析>>

同步練習(xí)冊答案