(14分) 已知圓方程為:.
(1)直線過點(diǎn),且與圓交于兩點(diǎn),若,求直線的方程;
(2)過圓上一動(dòng)點(diǎn)作平行于軸的直線,設(shè)軸的交點(diǎn)為,若向量為原點(diǎn)),求動(dòng)點(diǎn)的軌跡方程,并說明此軌跡是什么曲線.

解:(1)①當(dāng)直線垂直于軸時(shí),則此時(shí)直線方程為,與圓的兩個(gè)交點(diǎn)坐
標(biāo)為,其距離為  滿足題意 …1分
②若直線不垂直于軸,設(shè)其方程為,即     
設(shè)圓心到此直線的距離為,則,得 ……3分       
,,                                    
故所求直線方程為                               
綜上所述,所求直線為  …………7分                  
(2)設(shè)點(diǎn)的坐標(biāo)為),點(diǎn)坐標(biāo)為
點(diǎn)坐標(biāo)是                      …………9分
,
 即,   …………11分          
又∵,∴                     
點(diǎn)的軌跡方程是,   …13分     
軌跡是一個(gè)焦點(diǎn)在軸上的橢圓,除去長(zhǎng)軸端點(diǎn)。   ……14分 

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)一束光通過M(25,18)射入被x軸反射到圓C:x2+(y-7)2=25上.
(1)求通過圓心的反射光線所在的直線方程;
(2)求在x軸上反射點(diǎn)A的活動(dòng)范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線經(jīng)過點(diǎn),傾斜角,
(1)寫出直線的參數(shù)方程;
(2)設(shè)與圓相交于A、B兩點(diǎn),求點(diǎn)P到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線與圓相交于兩點(diǎn),
(1)求的取值范圍;
(2)若為坐標(biāo)原點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


(本小題14分)已知圓C的圓心在直線上,且與直線相切,被直線截得的弦長(zhǎng)為,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以為圓心的圓與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)圓軸相交于兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)使成等比數(shù)列,求的取值范圍(結(jié)果用區(qū)間表示).:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
在直角坐標(biāo)系xOy中,直線l與x軸正半軸和y軸正半軸分別相交于A,B兩點(diǎn),△AOB的內(nèi)切圓為圓M.
(1)如果圓M的半徑為1,l與圓M切于點(diǎn)C (,1+),求直線l的方程;
(2)如果圓M的半徑為1,證明:當(dāng)△AOB的面積、周長(zhǎng)最小時(shí),此時(shí)△AOB為同一個(gè)三角形;
(3)如果l的方程為x+y-2-=0,P為圓M上任一點(diǎn),求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知雙曲線,以右頂點(diǎn)為圓心,實(shí)半軸長(zhǎng)為半徑的圓被雙曲線的一條漸近線分為弧長(zhǎng)為1:2的兩部分,則雙曲線的離心率為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知圓,直線被圓所截得的弦的中點(diǎn)為P(5,3).
(1)求直線的方程;
(2)若直線與圓相交于兩個(gè)不同的點(diǎn),求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案