已知橢圓的右準線,離心率,是橢圓上的兩動點,動點滿足,(其中為常數(shù)).
(1)求橢圓標準方程;
(2)當且直線斜率均存在時,求的最小值;
(3)若是線段的中點,且,問是否存在常數(shù)和平面內(nèi)兩定點,使得動點滿足,若存在,求出的值和定點,;若不存在,請說明理由.

(1);(2);(3),

解析試題分析:(1)根據(jù)題意由已知可得:,進而求出基本量,得到橢圓方程; ;(2)由題中,可得中點與原點的斜率即為,即可化簡得:,結合基本不等式求最值,即由;(3)由(2)中已求出,即,可化簡得:,再結合條件,代入化簡可得: ,最后由點在橢圓上可得: ,即,化簡即P點是橢圓上的點,利用橢圓知識求出左、右焦點為
(I)由題設可知:.又,∴
橢圓標準方程為.                              5分
(2)設則由
 . 
當且僅當時取等號       10分
(3)
.∴.                      11分
,則由  
 y2. 因為點A、B在橢圓上,
所以 
所以. 即,所以P點是橢圓上的點,
設該橢圓的左、右焦點為,,則由橢圓的定義

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某小區(qū)想利用一矩形空地建市民健身廣場,設計時決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中,且中,,經(jīng)測量得到.為保證安全同時考慮美觀,健身廣場周圍準備加設一個保護欄.設計時經(jīng)過點作一直線交,從而得到五邊形的市民健身廣場,設
(1)將五邊形的面積表示為的函數(shù);
(2)當為何值時,市民健身廣場的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知a,b,c為正實數(shù),且a+b+c=1,求證:(-1)(-1)(-1)≥8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如下圖所示,橢圓的左頂點為是橢圓上異于點的任意一點,點與點關于點對稱.
(1)若點的坐標為,求的值;
(2)若橢圓上存在點,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

要制作一個如圖的框架(單位:m),要求所圍成的總面積為19.5(m2),其中ABCD是一個矩形,EFCD是一個等腰梯形,梯形高h=AB,tan∠FED=,設AB=xm,BC=y(tǒng)m.

(1)求y關于x的表達式;
(2)如何設計x、y的長度,才能使所用材料最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,短軸一個端到右焦點的距離為.
(Ⅰ)求橢圓C的方程:
(Ⅱ)設直線與橢圓C交于A、B兩點,坐標原點O到直線的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)利用基本不等式求最值:
(1)若,求函數(shù) 的最小值,并求此時x的值.
(2)設 ,求函數(shù) 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知正數(shù)滿足,求的取值范圍________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知的最小值是              。

查看答案和解析>>

同步練習冊答案