【題目】已知函數,若存在唯一的零點,且,則實數_______
【答案】
【解析】
(i)當a=0時,f(x)=3x2+1,令f(x)=0,解得x=±,函數f(x)有兩個零點,舍去。
(ii)當a≠0時,f′(x)=3ax26x=3ax(x),令f′(x)=0,解得x=0或2a.
①當a<0時, <0,當x<或x>0時,f′(x)<0,此時函數f(x)單調遞減;當<x<0時,f′(x)>0,此時函數f(x)單調遞增。
∴是函數f(x)的極小值點,0是函數f(x)的極大值點。
∵函數f(x)=ax33x2+1存在唯一的零點x0,且x0<0,則,無解,舍去。
②當a>0時, >0,當x>或x<0時,f′(x)>0,此時函數f(x)單調遞增;當0<x<時,f′(x)<0,此時函數f(x)單調遞減。
∴是函數f(x)的極小值點,0是函數f(x)的極大值點。
∵函數f(x)=ax33x2+1存在唯一的零點x0,且x0<0,則f(>0,即+1>0,a>0,解得a>2.
綜上可得:實數a的取值范圍是(2,+∞).
故答案為:(2,+∞).
科目:高中數學 來源: 題型:
【題目】為調查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如下:
性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)請根據上面的數據分析該地區(qū)的老年人需要志愿者提供幫助與性別有關嗎
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在投擲骰子試驗中,根據向上的點數可以定義許多事件,如:A={出現1點},B={出現3點或4點},C={出現的點數是奇數},D={出現的點數是偶數}.
(1)說明以上4個事件的關系.
(2)求兩兩運算的結果.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人組成一個小組參加電視臺舉辦的聽曲猜歌名活動,在每一輪活動中,依次播放三首樂曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜錯,則活動立即結束;若三人均猜對,則該小組進入下一輪,該小組最多參加三輪活動.已知每一輪甲猜對歌名的概率是,乙猜對歌名的概率是,丙猜對歌名的概率是,甲、乙、丙猜對與否互不影響.
(I)求該小組未能進入第二輪的概率;
(Ⅱ)記乙猜歌曲的次數為隨機變量,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學高三年級有學生500人,其中男生300人,女生200人。為了研究學生的數學成績是否與性別有關,采用分層抽樣的方法,從中抽取了100名學生,統(tǒng)計了他們期中考試的數學分數,然后按照性別分為男、女兩組,再將兩組的分數分成5組: 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。
(I)從樣本分數小于110分的學生中隨機抽取2人,求兩人恰為一男一女的概率;
(II)若規(guī)定分數不小于130分的學生為“數學尖子生”,請你根據已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數學尖子生與性別有關”?
附表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為若以直角坐標系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程為
(1)求直線的斜率和曲線C的直角坐標方程;
(2)若直線與曲線C交于A、B 兩點,設點,求|PA|+|PB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現連勝,則判定獲勝局數多者贏得比賽.假設每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結果相互獨立.
(1)求甲在4局以內(含4局)贏得比賽的概率;
(2)記X為比賽決出勝負時的總局數,求X的分布列和均值(數學期望).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com