精英家教網 > 高中數學 > 題目詳情

【題目】某工廠家具車間造AB型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時和2小時,漆工油漆一張AB型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張A、B型桌子分別獲利潤2千元和3千元,試問工廠每天應生產A、B型桌子各多少張,才能獲得利潤最大?

【答案】每天應生產A型桌子2張,B型桌子3張才能獲得最大利潤,最大利潤為13千元.

【解析】

本試題主要是考查了線性規(guī)劃問題中的最優(yōu)解的求解在實際生活中的運用.

根據題意設出變量設每天生產A型桌子x張,B型桌子y張,得到不等式區(qū)域,以及目標函數,作圖,分析最優(yōu)解.

解:設每天生產A型桌子x張,B型桌子y張,則……2

目標函數為:z=2x+3y……4

作出可行域:

……6

把直線2x+3y=0向右上方平移至的位置時,直線經過可行域上的點M,且與原點距離最大,此時z=2x+3y取最大值……8

解方程M的坐標為(2,3.

答:每天應生產A型桌子2張,B型桌子3張才能獲得最大利潤.……12

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,求的單調區(qū)間.

2)設直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.

3)已知分別在,處取得極值,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,。

(Ⅰ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數M;

(Ⅱ)如果對于任意的都有f(s)≥g(t)成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平行六面體,,為矩形.

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且數列滿足.

1)若數列是等差數列,求數列的通項公式;

2)若對任意的,都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系中,曲線:,為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線.

(1)說明是哪一種曲線,并將的方程化為極坐標方程;

(2)若直線的方程為,設的交點為,的交點為,,若的面積為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了迎接2019年全國文明城市評比,某市文明辦對市民進行了一次文明創(chuàng)建知識的網絡問卷調查.每一位市民有且僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分:100分)數據,統計結果如下表所示:

組別

頻數

25

150

200

250

225

100

50

(1)由頻數分布表可以認為,此次問卷調查的得分服從正態(tài)分布近似為這1000人得分的平均值(同一組數據用該組區(qū)間的中點值作為代表),請利用正態(tài)分布的知識求;

(2)在(1)的條件下,文明辦為此次參加問卷調查的市民制定如下獎勵方案:

(i)得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;

(ii)每次獲贈的隨機話費和對應的概率為:

獲贈的隨機話費(單位:元)

20

40

概率

現市民小王要參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求的分布列及數學期望.

附:①

②若,則,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,隨著互聯網技術的快速發(fā)展,共享經濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農家樂”等形式開始在很多平臺上線.某創(chuàng)業(yè)者計劃在某景區(qū)附近租賃一套農房發(fā)展成特色“農家樂”,為了確定未來發(fā)展方向,此創(chuàng)業(yè)者對該景區(qū)附近六家“農家樂”跟蹤調查了天.得到的統計數據如下表,為收費標準(單位:元/日),為入住天數(單位:),以頻率作為各自的“入住率”,收費標準與“入住率”的散點圖如圖

x

50

100

150

200

300

400

t

90

65

45

30

20

20

(1)若從以上六家“農家樂”中隨機抽取兩家深入調查,記為“入住率”超過的農家樂的個數,求的概率分布列;

(2)令,由散點圖判斷哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據你的判斷結果求回歸方程.(結果保留一位小數)

(3)若一年按天計算,試估計收費標準為多少時,年銷售額最大?(年銷售額入住率收費標準

參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】第十三屆全國人大第二次會議于201935日在北京開幕.為廣泛了解民意,某人大代表利用網站進行民意調查.數據調查顯示,民生問題是百姓最為關心的熱點,參與調查者中關注此問題的約占.現從參與調查者中隨機選出200人,并將這200人按年齡分組,第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)求;

(2)現在要從年齡較小的第1組和第2組中用分層抽樣的方法抽取5人,并再從這5人中隨機抽取2人接受現場訪談,求這兩人恰好屬于不同組別的概率;

(3)把年齡在第1,23組的居民稱為青少年組,年齡在第45組的居民稱為中老年組,若選出的200人中不關注民生問題的中老年人有10人,問是否有的把握認為是否關注民生與年齡有關?

附:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,

查看答案和解析>>

同步練習冊答案