【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),).在以坐標(biāo)原點為極點軸正半軸為極軸的極坐標(biāo)系中,曲線

(1)說明是哪一種曲線,并將的方程化為極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程為,其中滿足,若曲線的公共點都在 上,求.

【答案】(1); ρ2-2ρsin θ+1-a2=0.(2) a=1.

【解析】

(1)根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得C1的普通方程,再根據(jù)xρcos θyρsin θ化為極坐標(biāo)方程,(2)聯(lián)立極坐標(biāo)方程解得16cos2θ-8sin θcos θ+1-a2=0,再根據(jù)tan θ=2化簡得1-a2=0,解得a=1.

(1)消去參數(shù)t得到C1的普通方程為x2+(y-1)2a2,則C1是以(0,1)為圓心,a為半徑的圓.

xρcos θ,yρsin θ代入C1的普通方程中,得到C1的極坐標(biāo)方程為ρ2-2ρsin θ+1-a2=0.

(2)曲線C1C2的公共點的極坐標(biāo)滿足方程組,ρ≠0,由方程組得16cos2θ-8sin θcos θ+1-a2=0,由已知tan θ=2,得16cos2θ-8sin θcos θ=0,從而1-a2=0,解得a=-1(舍去)a=1.當(dāng)a=1時,極點也為C1,C2的公共點,且在C3上.所以a=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根據(jù)正弦定理把轉(zhuǎn)化為邊的關(guān)系,進而根據(jù)ABC的周長,聯(lián)立方程組,可求出a的值.

根據(jù)正弦定理,可化為

∵△ABC的周長為,

聯(lián)立方程組,

解得a=2.

故選:B

【點睛】

(1)在三角形中根據(jù)已知條件求未知的邊或角時,要靈活選擇正弦、余弦定理進行邊角之間的轉(zhuǎn)化,以達到求解的目的.

(2)求角的大小時,在得到角的某一個三角函數(shù)值后,還要根據(jù)角的范圍才能確定角的大小,這點容易被忽視,解題時要注意.

型】單選題
結(jié)束】
7

【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,PB與底面所成的角為45°,底面ABCD為直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.問:在棱PD上是否存在一點E,使得CE∥平面PAB?若存在,求出E點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京101中學(xué)校園內(nèi)有一個“少年湖”,湖的兩側(cè)有一個音樂教室和一個圖書館,如圖,若設(shè)音樂教室在A處,圖書館在B處,為測量A,B兩地之間的距離,某同學(xué)選定了與A,B不共線的C處,構(gòu)成△ABC,以下是測量的數(shù)據(jù)的不同方案:①測量∠A,AC,BC;②測量∠A,B,BC;③測量∠C,AC,BC;④測量∠AC,B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列中,,前項和滿足條件

1)求數(shù)列的通項公式和;

2)記,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐A﹣BCD中,側(cè)棱AB、AC、AD兩兩垂直,△ABC,△ACD,△ADB的面積分別為 , , 則三棱錐A﹣BCD的外接球的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求B點在AM上,D點在AN上,且對角線MN過點C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面積大于9平方米,則DN的長應(yīng)在什么范圍內(nèi)?

(2)當(dāng)DN的長度為多少時,矩形花壇AMPN的面積最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x-1)2+(y-2)2=2,過點P(2,-1)作圓C的切線,切點為A,B.

(1)求直線PAPB的方程;

(2)求過P點的圓C的切線長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某程序框圖如圖所示,則該程序運行后輸出的結(jié)果為(

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案