已知命題:方程表示焦點在y軸上的橢圓;
命題:雙曲線的離心率,若為真命題,為假命題,求實數(shù)的取值范圍.

<15

解析試題分析:研究四種命題關(guān)系,首先研究各命題為真時的充要條件,命題為真命題,則
所以,命題q為真命題,則,所以;其次研究復(fù)合命題真假性,確定簡單命題真假性,因為p或q為真,p且q為假,所以p與q為一真一假,對于命題為假的情形,取命題為真時范圍的補集,本題分兩組求解,取其并集. ,因此m的取值范圍為<15
試題解析:解:若p為真命題則  
所以;                                     2分
若q為真命題則    
所以                                        4分
(1)若 則  無解                       8分
(2)若 則  <15
故m的取值范圍為<15             12分
考點:四種命題關(guān)系,橢圓及雙曲線標(biāo)準(zhǔn)方程形式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標(biāo)原點),記點P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當(dāng)點(0,2)到直線l2的距離最短時,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為,且過點(2,).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)M,N,P,Q是橢圓C上的四個不同的點,兩條都不和x軸垂直的直線MN和PQ分別過點F1,F(xiàn)2,且這兩條直線互相垂直,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的頂點在原點,準(zhǔn)線方程為x=-.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若點P是拋物線上的動點,點P在y軸上的射影是Q,點M,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請說明理由;
(3)過拋物線焦點F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的焦點與橢圓的焦點重合,且該橢圓的長軸長為,是橢圓上的的動點.
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動點滿足:,直線的斜率之積為,求證:存在定點,
使得為定值,并求出的坐標(biāo);
(3)若在第一象限,且點關(guān)于原點對稱,點軸的射影為,連接 并延長交橢圓于
,求證:以為直徑的圓經(jīng)過點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線lyx,圓Ox2y2=5,橢圓E=1(a>b>0)的離心率e,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,梯形ABCD的底邊AB在y軸上,原點O為AB的中點,M為CD的中點.

(1)求點M的軌跡方程;
(2)過M作AB的垂線,垂足為N,若存在正常數(shù),使,且P點到A、B 的距離和為定值,求點P的軌跡E的方程;
(3)過的直線與軌跡E交于P、Q兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知命題:方程表示焦點在軸上的雙曲線。命題曲線軸交于不同的兩點,若為假命題,為真命題,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點、為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且.圓的方程是
(1)求雙曲線的方程;
(2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;

查看答案和解析>>

同步練習(xí)冊答案