【題目】在平面直角坐標(biāo)系中,已知是曲線:上的動點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,點(diǎn),射線與曲線,分別相交于異于極點(diǎn)的兩點(diǎn),求的面積.
【答案】(1)曲線:,曲線:;(2)
【解析】
(1)由題意,點(diǎn)Q的軌跡是以(2,0)為圓心,以2為半徑的圓,寫出其普通方程,再結(jié)合ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可得曲線C1,C2的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,設(shè)A,B的極徑分別為ρ1,ρ2,求得|AB|=|ρ1﹣ρ2|,再求出M(3,)到射線的距離h=,即可求得△MAB的面積.
(1)由題意,點(diǎn)Q的軌跡是以(2,0)為圓心,以2為半徑的圓,則曲線C2:,
∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,∴曲線C1的極坐標(biāo)方程為ρ=4sinθ,曲線C2的極坐標(biāo)方程為ρ=4cosθ;
(2)在極坐標(biāo)系中,設(shè)A,B的極徑分別為ρ1,ρ2,
又點(diǎn)到射線的距離為
的面積
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值A,函數(shù),其中…是自然對數(shù)的底數(shù).
(1)求m的值,并判斷A是的最大值還是最小值;
(2)求的單調(diào)區(qū)間;
(3)證明:對于任意正整數(shù)n,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓,圓心,點(diǎn)E在直線上,點(diǎn)P滿足,,點(diǎn)P的軌跡為曲線M.
(1)求曲線M的方程.
(2)過點(diǎn)N的直線l分別交M于點(diǎn)A、B,交圓N于點(diǎn)C、D(自上而下),若、、成等差數(shù)列,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,一同學(xué)通過網(wǎng)絡(luò)平臺聽網(wǎng)課,在家堅(jiān)持學(xué)習(xí).某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學(xué),語文,政治,地理,下午安排了三節(jié),分別是英語,歷史,體育.現(xiàn)在,他準(zhǔn)備在上午下午的課程中各任選一節(jié)進(jìn)行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學(xué)科(政治、歷史、地理)課程的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考方案規(guī)定,普通高中學(xué)業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計(jì)入高考總成績,即“選擇考”成績根據(jù)學(xué)生考試時(shí)的原始卷面分?jǐn)?shù),由高到低進(jìn)行排序,評定為A,B,C,D,E五個(gè)等級.某試點(diǎn)高中2019年參加“選擇考”總?cè)藬?shù)是2017年參加“選擇考”總?cè)藬?shù)的2倍,為了更好地分析該校學(xué)生“選擇考”的水平情況,統(tǒng)計(jì)了該校2017年和2019年“選擇考”成績等級結(jié)果,得到如圖表:
針對該!斑x擇考”情況,2019年與2017年比較,下列說法正確的是( )
A.獲得A等級的人數(shù)不變B.獲得B等級的人數(shù)增加了1倍
C.獲得C等級的人數(shù)減少了D.獲得E等級的人數(shù)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)證明;AC⊥BP;
(Ⅱ)求直線AD與平面APC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值;
(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
(1)若函數(shù)的最小值為0,求實(shí)數(shù)的值;
(2)若,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com