(本小題滿分12分)如圖, 在直角梯形中,

分別是的中點,現(xiàn)將折起,使,

(1)求證:∥平面;

(2)求點到平面的距離.

                                             

 

【答案】

.解(1)連結AC,底面ABCD是正方形,AC交BD于點F,且F是AC中點

又點E為PC中點,EF∥PA,

∥平面PAD                         -------------5分

(2)設點A到平面PBC的距離為h。PD底面ABCD,PDBC,

又DCBC,DCPC=D,BC面PDC,BCPC.

又由PDDC,PD=DC=2,得PC=,

從而          --------------------8分

另一方面,由PD底面ABCD,ABBC,且PD=AB=BC=2,得

,從而得:,

即點A到平面PBC的距離為.                       ----------12分   

【解析】

試題分析:(1)欲證EF∥平面APG,根據(jù)直線與平面平行的判定定理可知只需證AP與平面EFG內(nèi)一直線平行即可,取AD中點M,連接FM、MG,由條件知EF∥DC∥MG,則E、F、M、G四點共面,再根據(jù)三角形中位線定理知MF∥PA,滿足定理所需條件;

(2)利用等體積法來表示得到高度問題。

考點:本題主要是考查線面平行的判定定理和點到面的距離的求解運用。

點評:解決該試題的關鍵是通過利用三就愛哦行的中位線來得到平行線,然后借助于線線平行來得到線面平行的證明。同時利用等體積法求解高度問題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案