(本小題滿分12分)
已知函數(shù)的圖像上兩相鄰最高點(diǎn)的坐標(biāo)分別為.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且的取值范圍。

(Ⅰ). (Ⅱ).。

解析試題分析:(Ⅰ)
由題意知.      ……………………………………..(4分)
(Ⅱ), .   ……………………………………..(8分)
.(10分)
.…(12分)
考點(diǎn):不本題主要考查兩角和與差的三角函數(shù),正弦定理的應(yīng)用。
點(diǎn)評(píng):中檔題,三角函數(shù)恒等變換問題與正弦定理、余弦定理相結(jié)合解析考查,這在高考題目中已經(jīng)出現(xiàn)過,因此要在熟記公式的基礎(chǔ)上,分析它們的結(jié)合點(diǎn)。三角形中隱含條件就是“三角形內(nèi)角和定理”“角的范圍”,要格外留意。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知tanα=2,求+ sin2α﹣3sinα•cosα的值。
(2)已知角α終邊上一點(diǎn)P(﹣,1),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)f(x)=cos2x+sinxcosx.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若,求函數(shù)f(x)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)求函數(shù)的最小正周期和最小值;
并寫出該函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=2sinxcosx+cos2x.
(1)求的值;
(2)求函數(shù)f(x)的最大值及取得最大值時(shí)x的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)的圖象過點(diǎn).
(Ⅰ)求的值;
(Ⅱ)在△中,角,的對(duì)邊分別是,,.若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知f (x)=sinx+cosx (xÎR).
(Ⅰ)求函數(shù)f (x)的周期和最大值; 
(Ⅱ)若f (A+)=,求cos2A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)已知內(nèi)角A,B,C的對(duì)邊分別為,若向量共線,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知,,且
(I)將表示成的函數(shù),并求的最小正周期;
(II)記的最大值為, 、、分別為的三個(gè)內(nèi)角、對(duì)應(yīng)的邊長,若,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案