【題目】已知橢圓的離心率為,過左焦點(diǎn)且垂直于長軸的弦長為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)為橢圓的長軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)且斜率為的直線交橢圓兩點(diǎn),證明:為定值.

【答案】(1)(2)詳見解析

【解析】

試題分析:(1)過左焦點(diǎn)且垂直于長軸的弦長為通徑長,即,又離心率為,得,再由,解方程組得(2)解析幾何中證明定值問題,一般方法為以算代證,因?yàn)?/span>,利用,消y得,再聯(lián)立直線方程與橢圓方程,結(jié)合韋達(dá)定理,代入化簡得定值41

試題解析:(1)由,可得橢圓方程..........4分

(2)設(shè)的方程為,代入并整理得:

.....................6分

設(shè),則,

又因?yàn)?/span>,同理..............8分

,

所以是定值.................................12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線與直線)交于,兩點(diǎn).

1)當(dāng)時(shí),分別求在點(diǎn)處的切線方程;

2軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,四邊形是直角梯形, 底面 的中點(diǎn), 點(diǎn)在上,且.

(1)證明: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另外30人比較粗心.

(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表;

數(shù)學(xué)成績及格

數(shù)學(xué)成績不及格

合計(jì)

比較細(xì)心

45

比較粗心

合計(jì)

60

100

(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系?

參考數(shù)據(jù):獨(dú)立檢驗(yàn)隨機(jī)變量的臨界值參考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在各棱長為的直四棱柱中,底面為棱形, 為棱上一點(diǎn),且

(1)求證:平面平面

(2)平面將四棱柱分成上、下兩部分,求這兩部分的體積之比.

(棱臺(tái)的體積公式為,其中分別為上、下底面面積, 為棱臺(tái)的高)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

處的切線與直線平行,求的值;

討論函數(shù)的單調(diào)區(qū)間;

若函數(shù)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)遞減區(qū)間;

求函數(shù)在區(qū)間上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)有如下結(jié)論:

①該函數(shù)為偶函數(shù);

②若,則;

③其單調(diào)遞增區(qū)間是;

④值域是

⑤該函數(shù)的圖象與直線有且只有一個(gè)公共點(diǎn).(本題中是自然對(duì)數(shù)的底數(shù))

其中正確的是__________.(請把正確結(jié)論的序號(hào)填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形, 的中點(diǎn).

(1)求證: 平面

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案