【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額 (百元)的頻率分布直方圖如圖所示:
(1)求網(wǎng)民消費(fèi)金額的中位數(shù);
(2)把下表中空格里的數(shù)填上,能否有的把握認(rèn)為網(wǎng)購消費(fèi)與性別有關(guān);
(3)將(2)中的頻率當(dāng)作概率,電子商務(wù)平臺從該市網(wǎng)民中隨機(jī)抽取10人贈送電子禮金,求這10人中女性的人數(shù)的數(shù)學(xué)期望.
男 | 女 | 合計 | |
30 | |||
合計 | 45 |
附表:
.
【答案】(1)10;(2)答案見解析;(3)5.5.
【解析】試題分析:(1)根據(jù)頻率分布直方圖小長方形面積等于對應(yīng)區(qū)間概率,求出第一組,第二組的頻率,再根據(jù)頻率之和為0.5確定中位數(shù)(2)根據(jù)條件對應(yīng)填數(shù)據(jù),再代入到卡方公式,最后比較參考數(shù)據(jù),確定可靠性(3)先求概率,再根據(jù)二項分布得數(shù)學(xué)期望
試題解析:(1)直方圖中第一組,第二組的頻率之和為,
∴的中位數(shù).
(2)
男 | 女 | ||
25 | 25 | 50 | |
20 | 30 | 50 | |
45 | 55 | 100 |
.
沒有的把握認(rèn)為網(wǎng)購消費(fèi)與性別有關(guān).
(3)網(wǎng)購的網(wǎng)民中,女性的頻率為,
∴抽取10人中女性人數(shù), .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中放有大小和形狀相同而顏色互不相同的小球若干個, 其中標(biāo)號為0的小球1個, 標(biāo)號為1的小球1個, 標(biāo)號為2的小球2個, 從袋子中不放回地隨機(jī)抽取2個小球, 記第一次取出的小球標(biāo)號為,第二次取出的小球標(biāo)號為.
(1) 記事件表示“”, 求事件的概率;
(2) 在區(qū)間內(nèi)任取2個實(shí)數(shù), 記的最大值為,求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標(biāo)原點(diǎn),動點(diǎn)在圓外,過點(diǎn)作圓的切線,設(shè)切點(diǎn)為.
(1)若點(diǎn)運(yùn)動到處,求此時切線的方程;
(2)求滿足的點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形與梯形所在的平面互相垂直,,∥,,點(diǎn)在線段上.
(I)當(dāng)點(diǎn)為中點(diǎn)時,求證:∥平面;
(II)當(dāng)平面與平面所成銳二面角的余弦值為時,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某心理學(xué)研究小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其注意力指數(shù)p與聽課時間t之間的關(guān)系滿足如圖所示的曲線.當(dāng)t∈(0,14]時,曲線是二次函數(shù)圖象的一部分,當(dāng)t∈[14,40]時,曲線是函數(shù)(且)圖象的一部分.根據(jù)專家研究,當(dāng)注意力指數(shù)p大于等于80時聽課效果最佳.
(1)試求的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)難題,講解需要22分鐘,問老師能否經(jīng)過合理安排在學(xué)生聽課效果最佳時講完?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 平面,點(diǎn)在以為直徑的上, , ,點(diǎn)為線段的中點(diǎn),點(diǎn)在上,且.
(Ⅰ)求證: 平面平面;
(Ⅱ)求證: 平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象過點(diǎn),圖象與P點(diǎn)最近的一個最高點(diǎn)坐標(biāo)為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,求函數(shù)的值域;
(3)若方程在上有兩個不相等的實(shí)數(shù)根,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是各項均為正數(shù)的等比數(shù)列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com