如圖,在正三棱柱ABC-A1B1C1中,AA1=2AB,D,D1,G分別為AB,A1B1,A1C1的中點(diǎn),E、F在BB1上,且BB1=4BE=4B1F.
(1)求證:DG∥平面BCC1B1;
(2)求證:平面DEG⊥平面C1D1F.
【答案】分析:(1)由題意取B1C1的中點(diǎn)H,連接GH、BH,只要證明四邊形BDGH為平行四邊形,再利用直線(xiàn)與平面平行的判定定理進(jìn)行證明,即可解決問(wèn)題;
(2)已知三棱柱ABC-A1B1C1為正三棱柱,D1分別為A1B1的中點(diǎn),取BB1的中點(diǎn)為P,連接AP、A1P,則AP∥DE,A1P∥D1F,在等腰直角△ABP和△A1B1P中,可證AP⊥A1P,然后利用平面與平面垂直的判定定理進(jìn)行證明;
解答:證明:(1)如圖,取B1C1的中點(diǎn)H,連接GH、BH,
∵D,G分別為AB,A1C1的中點(diǎn),
∴GH∥A1B1,,
又三棱柱ABC-A1B1C1為正三棱柱,則BD∥GH,BD=GH,
故四邊形BDGH為平行四邊形,
∴DG∥BH,(4分)
又DG?平面BCC1B1,BH?平面BCC1B1
∴DG∥平面BCC1B1;(6分)
(2)由三棱柱ABC-A1B1C1為正三棱柱,D1分別為A1B1的中點(diǎn),
∴C1D1⊥平面ABB1A1,又DE?平面ABB1A1
∴C1D1⊥DE,(8分)
取BB1的中點(diǎn)為P,連接AP、A1P,則AP∥DE,A1P∥D1F,
設(shè)AB=a,由AA1=2AB,BB1=4BE=4B1F,
在等腰直角△ABP和△A1B1P中,,,
又AA1=2a,故AA12=AP2+A1P2,則AP⊥A1P,
∴在平面ABB1A1內(nèi),DE⊥D1F,(11分)
又C1D1∩D1F=D1,C1D1?平面C1D1F,F(xiàn)D1?平面C1D1F,
∴DE⊥平面C1D1F,又DE?平面DEG,
∴平面DEG⊥平面C1D1F.(14分)
點(diǎn)評(píng):此題考查直線(xiàn)與平面平行的判斷及平面與平面垂直的判斷,此類(lèi)問(wèn)題一般先證明兩個(gè)面平行,再證直線(xiàn)和面平行,這種做題思想要記住,此類(lèi)立體幾何題是每年高考必考的一道大題,同學(xué)們要課下要多練習(xí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小為60°,則點(diǎn)C到平面C1AB的距離為(  )
A、
3
4
B、
1
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD與平面AA1CC1所成的角為a,則sina=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,D、E、G分別是AB、BB1、AC1的中點(diǎn),AB=BB1=2.
(Ⅰ)在棱B1C1上是否存在點(diǎn)F使GF∥DE?如果存在,試確定它的位置;如果不存在,請(qǐng)說(shuō)明理由;
(Ⅱ)求截面DEG與底面ABC所成銳二面角的正切值;
(Ⅲ)求B1到截面DEG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AA1=4,AB=2,M是AC的中點(diǎn),點(diǎn)N在AA1上,AN=
14

(Ⅰ)求BC1與側(cè)面ACC1A1所成角的大;
(Ⅱ)求二面角C1-BM-C的正切值;
(Ⅲ)證明MN⊥BC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•馬鞍山二模)如圖,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延長(zhǎng)線(xiàn)上一點(diǎn),過(guò)A、B、P三點(diǎn)的平面交FD于M,交EF于N.
(I)求證:MN∥平面CDE:
(II)當(dāng)平面PAB⊥平面CDE時(shí),求三梭臺(tái)MNF-ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案