函數(shù)f(x)=數(shù)學(xué)公式在x=0處不連續(xù)是因?yàn)?/h1>
  1. A.
    f(x)在x=0處無(wú)定義
  2. B.
    數(shù)學(xué)公式不存在
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

D
分析:函數(shù)f(x)=,故===2,f(0)=1,所以
解答:∵函數(shù)f(x)=,
===2,
∵f(0)=1,
,
故選D.
點(diǎn)評(píng):本題考查函數(shù)的極限及其運(yùn)算,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

探究函數(shù)f(x)=x+
4
x
  x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下,請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成下列問(wèn)題:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若當(dāng)x>0時(shí),函數(shù)f(x)=x+
4
x
時(shí),在區(qū)間(0,2)上遞減,則在
 
上遞增;
(2)當(dāng)x=
 
時(shí),f(x)=x+
4
x
,x>0的最小值為
 

(3)試用定義證明f(x)=x+
4
x
,x>0在區(qū)間上(0,2)遞減;
(4)函數(shù)f(x)=x+
4
x
,x<0有最值嗎?是最大值還是最小值?此時(shí)x為何值?
解題說(shuō)明:(1)(2)兩題的結(jié)果直接填寫(xiě)在答題卷中橫線上;(4)題直接回答,不需證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),g(x),h(x),如果存在實(shí)數(shù)a,b,使得h(x)=af(x)+bg(x),那么稱(chēng)h(x)為f(x),g(x)的線性生成函數(shù).
(1)給出如下兩組函數(shù),試判斷h(x)是否分別為f(x),g(x)的線性生成函數(shù),并說(shuō)明理由.
第一組:f(x)=sinx,g(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數(shù)為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;
(3)已知f(x)=x,g(x)=
1
x
,x∈[1,10]
的線性生成函數(shù)h(x),其中a>0,b>0.若h(x)≥b對(duì)a∈[1,2]恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)記函數(shù)f(x)在區(qū)間D上的最大值與最小值分別為max{f(x)|x∈D}與min{f(x)|x∈D}.設(shè)函數(shù)f(x)=
-x+2b,  x∈[1,b]
b,         x∈(b,3]
,1<b<3.g(x)=f(x)+ax,x∈[1,3].
(1)若函數(shù)g(x)在[1,3]上單調(diào)遞減,求a的取值范圍;
(2)若a∈R.令,h(a)=max{g(x)|x∈[1,3]}-{g(x)|x∈[1,3]}.記d(b)=min{h(a)|a∈R}.試寫(xiě)出h(a)的表達(dá)式,并求min{d(b)|b∈(1,3)};
(3)令k(a)=max{g[f(x)]|x∈l}-min{g[f(x)]|x∈l}(其中l(wèi)為g[f(x)]的定義域).若l恰好為[1,3],求b的取值范圍,并求min{k(a)|a∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都一模)已知函數(shù)f(x)在[a,b]上連續(xù),定義
f1(x)=f(t)min,x∈[a,b],a≤t≤x
f2(x)=f(t)max,x∈[a,b],a≤t≤x
;其中f(x)min(x∈D)表示f(x)在D上的最小值,f(x)max(x∈D)表示f(x)在D上的最大值.若存在最小正整數(shù)k使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱(chēng)函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.有下列命題:
①若f(x)=cosx,x∈[0,π],則f1(x)=1,x∈[0,π];
②若f(x)=2x,x∈[-1,4],則f2(x)=2x,x∈[-1,4]
③f(x)=x為[1,2]上的1階收縮函數(shù);
④f(x)=x2為[1,4]上的5階收縮函數(shù).
其中你認(rèn)為正確的所有命題的序號(hào)為
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無(wú)窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案