已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
1
2
,短軸長為2
3

(1)求橢圓C的方程;
(2)從定點M(0,2)任作直線l與橢圓C交于兩個不同的點A、B,記線段AB的中點為P,試求點P的軌跡方程.
(1)∵橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
1
2
,短軸長為2
3
,
c
a
=
1
2
2b=2
3
a2=b2+c2
,解得a=2,b=
3
,
∴橢圓方程為
x2
4
+
y2
3
=1

(2)設P(x,y),A(x1,y1),B(x2,y2),
若直線l與x軸垂直,則P(0,0);
若直線l與x軸不垂直,設直線l的方程為y=kx+2,k≠0.
x2
4
+
y2
3
=1
y=kx+2
,得(3+4k2)x2+16kx+4=0,…①
2x=x1+x2=
-16k
3+4k2
y=kx+2
,將其消去k,得
3x2
4
+(y-1)2
=1,
由①中△=(-16k)2-16(3+4k2)>0,解得k2
1
4
,
則x=
-8k
3+4k2
=
-8
4k+
3
k
∈[-
2
3
3
,0
)∪(0,
2
3
3
],y=
-8k2
3+4k2
+2
=
6
3+4k2
∈(0,
3
2
).
綜上,所求點P的軌跡方程為
3x2
4
+(y-1)2
=1.y∈[0,
3
2
).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線為
l1,l2,過橢圓C的右焦點F作直線l,使l⊥l1,又l與l2交于P,設l與橢圓C的兩個交點由上至下依次為A、B(如圖).
(1)當l1與l2的夾角為60°,且△POF的面積為
3
2
時,求橢圓C的方程;
(2)當
FA
AP
時,求當λ取到最大值時橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一動圓過定點P(0,1),且與定直線l:y=-1相切.
(1)求動圓圓心C的軌跡方程;
(2)若(1)中的軌跡上兩動點記為A(x1,y1),B(x2,y2),且x1x2=-16.
①求證:直線AB過一定點,并求該定點坐標;
②求|PA|+|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知雙曲線C1:2x2-y2=1.
(1)過C1的左頂點引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)設斜率為1的直線l交C1于P、Q兩點,若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動點,且OM⊥ON,求證:O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知O為坐標原點,F(xiàn)為橢圓C:x2+
y2
2
=1
在y軸正半軸上的焦點,過F且斜率為-
2
的直線l與C交于A、B兩點,點P滿足
OA
+
OB
+
OP
=
0

(Ⅰ)證明:點P在C上;
(Ⅱ)設點P關于點O的對稱點為Q,證明:A、P、B、Q四點在同一圓上.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=x,直線l:y=k(x-1)+1,要使拋物線C上存在關于對稱的兩點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直線l過x軸上的點M,l交橢圓
x2
8
+
y2
4
=1
于A,B兩點,O是坐標原點.
(1)若M的坐標為(2,0),當OA⊥OB時,求直線l的方程;
(2)若M的坐標為(1,0),設直線l的斜率為k(k≠0),是否存直線l,使得l垂直平分橢圓的一條弦?如果存在,求k的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若直線y=kx+2與曲線y=
x2-1
,|x|>1
1-x2
,|x|≤1
恰有兩個不同的交點,則k∈______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線C1x2-
y2
4
=1

(1)求與雙曲線C1有相同焦點,且過點P(4,
3
)的雙曲線C2的標準方程;
(2)直線l:y=x+m分別交雙曲線C1的兩條漸近線于A、B兩點.當
OA
OB
=3
時,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案