在等差數(shù)列{an}中,a1=1,a6=2a3+1,對(duì)任意的n,設(shè)數(shù)學(xué)公式,則滿足S2k+1>35的最小正整數(shù)K的取值等于


  1. A.
    16
  2. B.
    17
  3. C.
    18
  4. D.
    19
C
分析:由a6=2a3+1,知a1=1,d=2,an=2n-1,故Sn=1-3+5-7+…+(-1)n-1•(2n-1),由此能夠求出滿足S2k+1>35的最小正整數(shù)K的取值.
解答:∵等差數(shù)列{an}中,a1=1,a6=2a3+1,

解得a1=1,d=2,
∴an=2n-1,
∴Sn=1-3+5-7+…+(-1)n-1•(2n-1),

=-2k+[2•(2k+1)-1]
=-2k+4k+1=2k+1>35,
∴2k>34,
∴k>17,
∴最小正整數(shù)K值為18,
故選C.
點(diǎn)評(píng):本題考查數(shù)列的前n項(xiàng)和公式的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2010,其前n項(xiàng)的和為Sn.若
S2010
2010
-
S2008
2008
=2,則S2010=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+3a8+a15=60,則2a9-a10的值為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個(gè)根,那么使得前n項(xiàng)和Sn為負(fù)值的最大的n的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若S4=1,S8=4,則a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案