F1、F2是橢圓
x2
25
+
y2
9
=1的左右兩焦點,點P在橢圓上,若P到F1的距離等于8,則P到F2的距離是
 
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)橢圓的方程算出橢圓的長軸2a=10,再由P到F1的距離等于8,利用橢圓的定義即可算出P到F2的距離.
解答: 解:橢圓
x2
25
+
y2
9
=1中a=5,
∴|PF1|+|PF2|=2a=10,
∵P到F1的距離等于8,
∴P到F2的距離是2.
故答案為:2.
點評:本題給出焦點在x軸上的橢圓,在已知點P到橢圓一個焦點距離的情況下求它到另一個焦點的距離.著重考查了橢圓的定義與標準方程等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log5
1+x
1-x

(1)求f(x)的定義域;
(2)證明f(x)在定義域內(nèi)是單調(diào)遞增函數(shù);
(3)解不等式:f(x)<f(1-x).(提示:若ab(或
a
b
)>0,則有
a>0
b>0
a<0
b<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人玩數(shù)學游戲,先由甲心中任想一個數(shù)字記為a,再由乙猜甲剛才想的數(shù)學,把乙猜的數(shù)字記為b,且a,b∈{3,4.5,6},若|a-b|≤1,則稱甲乙“心有靈犀”,現(xiàn)任意找兩人玩這個游戲,得出他們“心有靈犀”的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明命題:
3
不是有理數(shù).假設的內(nèi)容是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y=a與圓x2+y2=4交于A、B兩個不同點,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的焦點為F1(-4,0)、F2(4,0),離心率為2,則雙曲線的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
4
=1(a>0)的一條漸近線方程為2x-y=0,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面上三個向量
OA
OB
,
OC
,滿足|
OA
|=1,|
OB
|=
3
,|
OC
|=2,
OA
OB
=0,則
CA
CB
最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2ax+6在區(qū)間(-∞,3)是減函數(shù),則( 。
A、a≥3B、a>0
C、a≤3D、a<3

查看答案和解析>>

同步練習冊答案