3.對(duì)于函數(shù)f(x)=$\frac{2}{{3}^{x}+1}$+m,(m∈R)
(1)判斷函數(shù)f(x)的單調(diào)性,并用定義證明
(2)是否存在實(shí)數(shù)m使函數(shù)f(x)為奇函數(shù).

分析 (1)利用函數(shù)單調(diào)性的定義,即可證明;
(2)利用f(0)=0,即可求解.

解答 解:(1)f(x) 在(-∞,+∞) 上為單調(diào)減函數(shù)
證明:設(shè)x1>x2,則:f(x1)-f(x2)=$\frac{2({3}^{{x}_{2}}-{3}^{{x}_{1}})}{({3}^{{x}_{1}}+1)({3}^{{x}_{2}}+1)}$
∵x1>x2;
∴${3}^{{x}_{2}}$-${3}^{{x}_{1}}$<0,∴f(x1)<f(x2),
∴f(x) 在 (-∞,+∞) 上為減函數(shù). (6分)
(2)令f(0)=0,可得1+m=0,∴m=-1.

點(diǎn)評(píng) 本題考查根據(jù)減函數(shù)的定義證明一個(gè)函數(shù)為減函數(shù)的方法及過程,考查函數(shù)的奇偶性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.以$A(-\sqrt{3},0)$為圓心,4為半徑作圓,$B(\sqrt{3},0)$,C為圓上任意一點(diǎn),分別連接AC,BC,過BC的中點(diǎn)N作BC的垂線,交AC于點(diǎn)M,當(dāng)點(diǎn)C在圓上運(yùn)動(dòng)時(shí),
(1)求M點(diǎn)的軌跡方程,并說明它是何種曲線;
(2)求直線y=kx+1截(1)所得曲線弦長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在數(shù)列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0)
(Ⅰ)設(shè)bn=an+1-an(n∈N*),證明{bn}是等比數(shù)列;
(Ⅱ)當(dāng)q=2時(shí),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2+bx+c的圖象在y軸上的截距為1,且滿足f(x+1)=f(x)+x+1,
試求:(1)f(x)的解析式;
(2)當(dāng)f(x)≤7時(shí),對(duì)應(yīng)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.焦點(diǎn)在x軸上的拋物線,準(zhǔn)線方程x=-2
(1)求該拋物線的標(biāo)準(zhǔn)方程.
(2)過點(diǎn)Q(4,1)做該拋物線的弦AB,該弦恰好被點(diǎn)Q平分,求弦AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)直線l經(jīng)過橢圓$\frac{x^2}{4}+{y^2}=1$的右焦點(diǎn)且傾斜角為45°,若直線l與橢圓相交于A,B兩點(diǎn),則|AB|=( 。
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2CD=2,側(cè)面APD為等腰直角三角形,∠APD=90°,平面PAD⊥平面ABCD,E為棱PC上的一點(diǎn).
(1)求證:PA⊥DE;
(2)在棱PC上是否存在一點(diǎn)E,使得二面角E-BD-A的余弦值為-$\frac{{\sqrt{3}}}{3}$,若存在,請(qǐng)求出$\frac{EC}{PC}$的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.對(duì)于二次函數(shù)y=-4x2+8x-5,
(1)指出圖象的開口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
(2)畫出它的圖象,并說明其圖象由y=-4x2的圖象經(jīng)過怎樣平移得來;
(3)分析函數(shù)的單調(diào)性.
(4)求函數(shù)的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正六棱柱的12個(gè)頂點(diǎn)都在一個(gè)半徑為3的球面上,當(dāng)正六棱柱的體積最大時(shí),其高的值為( 。
A.3$\sqrt{3}$B.$\sqrt{3}$C.2$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案