如圖所示,點(diǎn)C在線段BD上,且BC=3CD,則數(shù)學(xué)公式=


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:利用向量的三角形法則即可得出.
解答:∵BC=3CD,∴
==
=
故選C.
點(diǎn)評:熟練掌握向量的運(yùn)算法則是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A(不等式選做題)若x>0,y>0且x+2y=1,則
1
x
+
1
y
的取值范圍是
 

B(幾何證明選講選做題)如圖所示,圓O上一點(diǎn)C在直徑AB上的射影為D,CD=4,BD=8,則線段DO的長等于
 

C(坐標(biāo)系與參數(shù)方程選做題)曲線
x=2+cosθ
y=-1+sinθ
(θ為參數(shù))上一點(diǎn)P,過點(diǎn)A(-2,0) B(0,2)的直線記為L,則點(diǎn)P到直線L距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,中心在原點(diǎn),頂點(diǎn)A1、A2在x軸上,離心率為
21
3
的雙曲線C經(jīng)過點(diǎn)P (6,6),動(dòng)直線l經(jīng)過點(diǎn)(0,1)與雙曲線C交于M、N兩點(diǎn),Q為線段MN的中點(diǎn).
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)若E點(diǎn)為(1,0),是否存在實(shí)數(shù)λ使
EQ
A2P
,若存在,求λ值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建四地六校高三上學(xué)期第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合于B,構(gòu)成一個(gè)三棱錐(如圖所示).

(Ⅰ)在三棱錐上標(biāo)注出、點(diǎn),并判別MN與平面AEF的位置關(guān)系,并給出證明;

(Ⅱ)是線段上一點(diǎn),且,問是否存在點(diǎn)使得,若存在,求出的值;若不存在,請說明理由;

(Ⅲ)求多面體E-AFNM的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三5月模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),MN分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AFEF折疊,使B、C、D三點(diǎn)重合于B,構(gòu)成一個(gè)三棱錐(如圖所示).

   

(Ⅰ)在三棱錐上標(biāo)注出、點(diǎn),并判別MN與平面AEF的位置關(guān)系,并給出證明;

(Ⅱ)是線段上一點(diǎn),且, 問是否存在點(diǎn)使得,若存在,求出的值;若不存在,請說明理由;

(Ⅲ)求多面體E-AFNM的體積.

 

查看答案和解析>>

同步練習(xí)冊答案