A. | $(0,\frac{3}{2})$ | B. | $(0,\frac{{3\sqrt{3}}}{2})$ | C. | $(0,\frac{{\sqrt{3}}}{2})$ | D. | 以上都不對 |
分析 求出函數(shù)的導數(shù),得到函數(shù)的極值,f(x)=x3-ax2+a(a>0)有且只有一個零點,極小值大于0,列出不等式求解即可.
解答 解:f(x)=x3-ax2+a,(a>0)可得y′=3x2-2ax,令y′=0,可得x=0,或x=$\frac{2a}{3}$,
x<0時y′>0,
x>$\frac{2a}{3}$時,y′>0,
0<x<$\frac{2a}{3}$時,y′<0,
∴函數(shù)在(-∞,0),($\frac{2a}{3}$,+∞)單調(diào)遞增,在(0,$\frac{2a}{3}$)單調(diào)遞減,
x=0時,函數(shù)取的極大值為:a>0.
∴x=$\frac{2a}{3}$時,函數(shù)取得極小值:$-\frac{4{a}^{3}}{27}+a$,f(x)=x3-ax2+a(a>0)有且只有一個零點,
必有:$-\frac{4{a}^{3}}{27}+a$>0,解得a∈(0,$\frac{3\sqrt{3}}{2}$),
故選:B.
點評 本題考查了函數(shù)的思想,運用求解零點問題,關(guān)鍵構(gòu)造函數(shù),利用圖象交點問題求解,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,-1) | C. | (1,+∞) | D. | (-1,∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(-\sqrt{3},1)∪(\sqrt{3},+∞)$ | B. | $(-∞,-1)∪(\sqrt{3},+∞)$ | C. | $(-∞,-\sqrt{3})∪(\sqrt{3},+∞)$ | D. | $(-\sqrt{3},-1)∪(1,\sqrt{3})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com