19.若$\frac{-11}{(x+3)(2x-5)}$=$\frac{A}{x+3}$+$\frac{B}{2x-5}$,求A,B的值.

分析 右邊通分母,利用恒等關(guān)系,即可求A,B的值.

解答 解:$\frac{A}{x+3}$+$\frac{B}{2x-5}$=$\frac{(2A+B)x+(-5A+3B)}{(x+3)(2x-5)}$,
∵$\frac{-11}{(x+3)(2x-5)}$=$\frac{A}{x+3}$+$\frac{B}{2x-5}$,
∴$\left\{\begin{array}{l}{2A+B=0}\\{-5A+3B=-11}\end{array}\right.$,
∴A=1,B=-2.

點(diǎn)評(píng) 本題考查字母值的求解,考查學(xué)生的計(jì)算能力,正確變形是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.f(x)=x3-ax2+a(a>0)有且只有一個(gè)零點(diǎn),則a的范圍為(  )
A.$(0,\frac{3}{2})$B.$(0,\frac{{3\sqrt{3}}}{2})$C.$(0,\frac{{\sqrt{3}}}{2})$D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$|\overrightarrow b|=5$,且$\overrightarrow a•\overrightarrow b=12$,則$\overrightarrow a$在$\overrightarrow b$方向上的投影為( 。
A.$\frac{12}{5}$B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個(gè)不同的零點(diǎn),記min{m,n}=$\left\{\begin{array}{l}m({m≤n})\\ n({m>n})\end{array}$,則min{h(0),h(1)}的取值范圍為(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.給出以下命題:
①若f′(x0)=0,則f(x0)為f(x)的極值.
②若f(x)的極大值為f(x1),f(x)的極小值為f(x2),則f(x1)>f(x2);
③△ABC中,若sin2A+sin2B<sin2C,則△ABC是鈍角三角形;
④若函數(shù)f(x)=cos2x+asinx在區(qū)間$(\frac{π}{4},\frac{π}{2})$是減函數(shù),則a∈$({-∞,2\sqrt{2}}]$
⑤設(shè)△ABC的三邊長(zhǎng)分別為a、b、c,△ABC的面積為S,內(nèi)切圓半徑為r,則r=$\frac{2S}{a+b+c}$;類比這個(gè)結(jié)論可知:四面體S-ABC的四個(gè)面的面積分別為S1、S2、S3、S4,內(nèi)切球的半徑為R,四面體P-ABC的體積為V,則R=$\frac{3V}{S_1+S_2+S_3+S_4}$
其中正確命題的序號(hào)為③④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若二次函數(shù)滿足f(-x)=f(x),f(0)=-$\frac{1}{4}$,f(1)=$\frac{3}{4}$且f(cos$\frac{B}{2}$)=0.
(1)求角B的大小;
(2)若△ABC的面積為$\frac{15\sqrt{3}}{4}$,△ABC的外接圓半徑為$\frac{7\sqrt{3}}{3}$,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.到直線2x+y+1=0的距離為$\frac{{\sqrt{5}}}{5}$的點(diǎn)的集合為( 。
A.直線2x+y-2=0B.直線2x+y=0
C.直線2x+y=0或2x+y-2=0D.直線2x+y=0或直線2x+2y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.有15人進(jìn)了家電超市,其中有9人買了電視機(jī),有7人買了電腦,兩種均買了的有3人,則這兩種均沒(méi)買的有2人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某衛(wèi)視推出一檔全新益智答題類節(jié)目,這檔節(jié)目打破以往答題類節(jié)目的固定模式,每檔節(jié)目中將會(huì)有各種年齡層次,不同身份,性格各異的10位守擂者和1位打擂者參加,以PK的方式獲得別人手中的獎(jiǎng)品,一旦失敗,就將掉下擂臺(tái),能否“一站到底”成為節(jié)目最大懸念.現(xiàn)有一位參賽者已經(jīng)挑落10人,此時(shí)他可以贏得10件獎(jiǎng)品離開或者沖擊超級(jí)大獎(jiǎng)“馬爾代夫雙人游”,沖擊超級(jí)大獎(jiǎng)會(huì)有一定的風(fēng)險(xiǎn),節(jié)目組會(huì)精選5道題進(jìn)行考核,每個(gè)問(wèn)題能正確回答進(jìn)入下一道,否則失敗,此時(shí)只能帶走5件獎(jiǎng)品,若5道題全部答對(duì)則可以帶走10件獎(jiǎng)品且還可以獲得超級(jí)大獎(jiǎng)“馬爾代夫雙人游”.若這位參賽者答對(duì)第1,2,3,4,5道題的概率分別為$\frac{5}{6}$,$\frac{2}{3}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{6}$,且各輪問(wèn)題能否正確回答互不影響,求:
(Ⅰ)該參賽者選擇沖擊大獎(jiǎng)最終只帶走5件獎(jiǎng)品的概率;
(Ⅱ)該參賽者在沖擊超級(jí)大獎(jiǎng)的過(guò)程中回答問(wèn)題的個(gè)數(shù)記為X,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案