已知?jiǎng)訄A過定點(diǎn),且與直線 相切.
(1)求動(dòng)圓的圓心M的軌跡C的方程;
(2)拋物線C上一點(diǎn),是否存在直線與軌跡C相交于兩不同的點(diǎn)B,C,使 的垂心為?若存在,求直線的方程;若不存在,說明理由.
(1)(2)
【解析】
試題分析:(Ⅰ)由拋物線的定義知,點(diǎn)M的軌跡為拋物線,其中為焦點(diǎn),為準(zhǔn)線,所以動(dòng)圓的圓心M的軌跡C的方程為; 4分
(Ⅱ)由已知得,直線的斜率為,由直線的斜率為1,
設(shè)直線的方程是,由,消去得,
由韋達(dá)定理得,由,得
由,得,
即,
所以,
即,得,
解得或,當(dāng)時(shí),直線的方程是,過點(diǎn),不合,
所以存在這樣的直線,其方程是. 10分
考點(diǎn):拋物線定義及拋物線與直線相交的位置關(guān)系
點(diǎn)評(píng):拋物線定義:拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,依據(jù)圓錐曲線定義求解動(dòng)點(diǎn)的軌跡方程是常用的求軌跡方程的方法,當(dāng)已知中有直線與圓錐曲線相交時(shí),常聯(lián)立方程,利用韋達(dá)定理化簡(jiǎn)條件求結(jié)論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(05年山東卷理)(14分)
已知?jiǎng)訄A過定點(diǎn),且與直線相切,其中.
(I)求動(dòng)圓圓心的軌跡的方程;
(II)設(shè)A、B是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線和的傾斜角分別為和,當(dāng)變化且為定值時(shí),證明直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知?jiǎng)訄A過定點(diǎn),且與直線相切.
(1) 求動(dòng)圓的圓心軌跡的方程;
(2) 是否存在直線,使過點(diǎn)(0,1),并與軌跡交于兩點(diǎn),且滿足?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分13分)已知?jiǎng)訄A過定點(diǎn),且與直線相切.
(1) 求動(dòng)圓的圓心軌跡的方程;(2) 是否存在直線,使過點(diǎn)(0,1),并與軌跡交于兩點(diǎn),且滿足?若存在,求出直線的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知?jiǎng)訄A過定點(diǎn),且與直線相切.
(1) 求動(dòng)圓的圓心軌跡的方程;
(2) 是否存在直線,使過點(diǎn),并與軌跡交于兩點(diǎn),且滿足
?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三第二次階段性考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分) 已知?jiǎng)訄A過定點(diǎn),且與直線相切,橢圓 的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是,點(diǎn)在橢圓上.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程及其橢圓的方程;
(Ⅱ)若動(dòng)直線與軌跡在處的切線平行,且直線與橢圓交于兩點(diǎn),問:是否存在著這樣的直線使得的面積等于?如果存在,請(qǐng)求出直線的方程;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com