A. | 3 | B. | 4 | C. | 6 | D. | 8 |
分析 由圓的方程,我們可以求出圓的圓心坐標及半徑,根據(jù)半弦長,弦心距,半徑構(gòu)成直角三角形,滿足勾股定理,我們即可求出答案.
解答 解:由圓的方程(x+1)2+(y-4)2=25可得,圓心坐標為(-1,4),半徑R=5,
所以圓心到直線4x-3y-4=0的距離d=$\frac{|-4-12-4|}{\sqrt{16+9}}$=4,
由半弦長,弦心距,半徑構(gòu)成直角三角形,滿足勾股定理可得:
所以弦長l=2$\sqrt{25-16}$=6,
故選:C.
點評 本題考查的知識點是直線與圓相交的有關(guān)性質(zhì),其中直線與圓相交的弦長問題常根據(jù)半弦長,弦心距,半徑構(gòu)成直角三角形,滿足勾股定理進行解答.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2012}{2013}$ | B. | $\frac{2013}{2014}$ | C. | $\frac{2014}{2015}$ | D. | $\frac{2015}{2016}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 0 | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2x-y+1=0 | B. | 4x-y-1=0 | C. | x-y+2=0 | D. | 3x-y=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | $\frac{4-π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{4-π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com