【題目】如圖所示,四棱錐的底面是邊長為1的菱形,

ECD的中點,PA底面ABCD,

I)證明:平面PBE平面PAB;

II)求二面角A—BE—P和的大。

【答案】I)同解析(II)二面角的大小為

【解析】

解:解法一(I)如圖所示, 連結(jié)是菱形且知,

是等邊三角形. 因為ECD的中點,所以

所以

又因為PA平面ABCD平面ABCD,

所以因此平面PAB.

平面PBE,所以平面PBE平面PAB.

II)由(I)知,平面PAB,平面PAB, 所以

所以是二面角的平面角.

,

故二面角的大小為

解法二:如圖所示,A為原點,建立空間直角坐標(biāo)系.則相關(guān)各點的坐標(biāo)分別是

I)因為平面PAB的一個法向量是所以共線.

從而平面PAB. 又因為平面PBE,所以平面PBE平面PAB.

II)易知設(shè)是平面PBE的一個法向量,

則由所以

故可取而平面ABE的一個法向量是

于是,

故二面角的大小為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】越野汽車輪胎的質(zhì)量是根據(jù)其正常使用的時間來衡量,使用時間越長,表明質(zhì)量越好,且使用時間大于或等于6千小時的為優(yōu)質(zhì)品.現(xiàn)用,兩種不同型號的汽車輪胎做試驗,各隨機抽取部分產(chǎn)品作為樣本,得到試驗結(jié)果的頻率分布直方圖如圖所示,以上述試驗結(jié)果中各組的頻率作為相應(yīng)的概率.

1)現(xiàn)從大量的,兩種型號的輪胎中各隨機抽取2件產(chǎn)品,求其中至少有3件是優(yōu)質(zhì)品的概率;

2)通過多年統(tǒng)計發(fā)現(xiàn),型輪胎每件產(chǎn)品的利潤(單位:元)與其使用時間(單位:千小時)的關(guān)系如下表:

使用時間(單位:千小時)

每件產(chǎn)品的利潤(單位:元)

200

400

若從大量的型輪胎中隨機抽取兩件,其利潤之和記為(單位:元),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知邊長為米的正方形鋼板有一個角被銹蝕,其中米, 米.為了合理利用這塊鋼板,將在五邊形內(nèi)截取一個矩形塊,使點在邊上.

1)設(shè)米, 米,將表示成的函數(shù),求該函數(shù)的解析式及定義域;

2)求矩形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (t為參數(shù)).為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)設(shè)曲線與曲線交于兩點,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)有三個不同的零點,則實數(shù)的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的一個極值點.

1)求函數(shù)的單調(diào)區(qū)間;

2)若當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,則滿足什么條件時,曲線處總有相同的切線?

2)當(dāng)時,求函數(shù)的單調(diào)減區(qū)間;

3)當(dāng)時,若對任意的恒成立,求的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),求:

(1)函數(shù)的圖象在點(0,-2)處的切線方程;

(2)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個數(shù)是( )

①某同學(xué)投籃的命中率為0.6,他10次投籃中命中的次數(shù)是一個隨機變量,且;

②某福彩中獎概率為,某人一次買了8張,中獎張數(shù)是一個隨機變量,且;

③從裝有5個紅球、5個白球的袋中,有放回地摸球,直到摸出白球為止,則摸球次數(shù)是隨機變量,且

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案