3.已知函數(shù)f(x)=tanx,則f(x)在點(diǎn)$P(\frac{π}{4},f(\frac{π}{4}))$處的線方程為2x-y+1-$\frac{π}{2}$=0.

分析 求出f(x)的導(dǎo)函數(shù),把x=$\frac{π}{4}$代入到導(dǎo)函數(shù)中求出切線的斜率和切點(diǎn),再由點(diǎn)斜式方程即可得到切線方程.

解答 解:f′(x)=sec2x,
把x=$\frac{π}{4}$代入得到切線的斜率k=f′($\frac{π}{4}$)=sec2$\frac{π}{4}$=$\frac{1}{co{s}^{2}\frac{π}{4}}$=$\frac{1}{\frac{1}{2}}$=2,
切點(diǎn)為($\frac{π}{4}$,1),
則所求切線方程為y-1=2(x-$\frac{π}{4}$),
即為2x-y+1-$\frac{π}{2}$=0.
故答案為:$2x-y+1-\frac{π}{2}=0$.

點(diǎn)評 本題考查學(xué)生會利用導(dǎo)函數(shù)求切線的斜率,考查直線方程的點(diǎn)斜式,會進(jìn)行導(dǎo)數(shù)的運(yùn)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.問“x是第二象限角”是“y=sinx,y=cosx都是減函數(shù)”的什么條件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx,g(x)=(x-1)ex,其中e是自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)在點(diǎn)P(m,f(m))處的切線在y軸上的截距為2,求實(shí)數(shù)m的取值;
(2)求函數(shù)h(x)=g(x)+g′(x)的極值;
(3)求函數(shù)r(x)=g(x)+e|f(x)-a|(a為常數(shù))的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,直線l:2x+y-4=0.
(1)若直線m過點(diǎn)A(2,1),且與直線l垂直,求直線m的方程;
(2)若直線n與直線l平行,且在x軸、y軸上的截距之和為9,求直線n的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若變量y與x之間的相關(guān)系數(shù)r=-0.9362,則變量y與x之間( 。
A.不具有線性相關(guān)關(guān)系
B.具有線性相關(guān)關(guān)系
C.它們的線性相關(guān)關(guān)系還需要進(jìn)一步確定
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.想沏壺茶喝.洗燒開水的壺、灌入涼水需2分鐘,洗茶壺、茶杯需2分鐘,拿茶葉需1分鐘,燒開水需15分鐘,沏茶需1分鐘.最省時的操作時間是( 。
A.17分鐘B.18分鐘C.19分鐘D.20分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1,若點(diǎn)P是橢圓上的動點(diǎn),GH是圓(x+1)2+y2=1的直徑,試求$\overrightarrow{PG}$•$\overrightarrow{PH}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,AB=$\sqrt{3}$,BC=2,∠A=$\frac{π}{2}$,|$\overrightarrow{BA}$-t$\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|,則實(shí)數(shù)t的取值范圍是( 。
A.[1,+∞)B.[$\frac{1}{2}$,1]C.(-∞,0]∪[1,+∞)D.(-∞,$\frac{1}{2}$]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足:|$\overrightarrow{a}$|=1,|$\overrightarrow$|=4,且$\overrightarrow{a}$、$\overrightarrow$的夾角為60°.
(1)求(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$);
(2)若($\overrightarrow{a}$+$\overrightarrow$)⊥(λ$\overrightarrow{a}$-2$\overrightarrow$),求λ的值.

查看答案和解析>>

同步練習(xí)冊答案