用半徑為R的圓鐵皮剪一個內(nèi)接矩形,再將內(nèi)接矩形卷成一個圓柱(無底、無蓋),問使矩形邊長為多少時,其體積最大?

解:可設(shè)矩形的兩邊x,y,由幾何關(guān)系x2+y2=4R2故有y=.,
則體積V==
∴V′=×(2x×+
令V′=0得2x×+=0,整理得=x,解得x=R,此時另一邊長為
即當(dāng)x=R時,體積取到最大值,最大值為V==
即當(dāng)長與寬都是時,此圓柱體體積取到最大值
分析:首先分析題目要求半徑為R的圓鐵皮剪一個內(nèi)接矩形,將內(nèi)接矩形卷成一個圓柱(無底、無蓋),求其體積最大.故可以設(shè)矩形的兩邊x,y.然后列出方程.由幾何關(guān)系x2+y2=4R2故有y=.利用公式表示成圓柱體的體積,利用導(dǎo)數(shù)求最值即可.
點(diǎn)評:此題主要考查導(dǎo)數(shù)求最值在實(shí)際中的應(yīng)用問題,由導(dǎo)數(shù)求最值在高考中屬于重要考點(diǎn),需要同學(xué)們理解記憶.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用半徑為R的圓鐵皮剪一個內(nèi)接矩形,再將內(nèi)接矩形卷成一個圓柱(無底、無蓋),問使矩形邊長為多少時,其體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用半徑為R的圓鐵皮剪一個內(nèi)接矩形,再以內(nèi)接矩形的兩邊分別作為圓柱的高與底面半徑,則當(dāng)圓柱的高為(    )時,圓柱的體積最大.   

    A.         B.        C.        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用半徑為R的圓鐵皮剪一個內(nèi)接矩形,再將內(nèi)接矩形卷成一個圓柱(無底、無蓋),問使矩形邊長為多少時,其體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省高考數(shù)學(xué)一輪復(fù)習(xí):4.5 生活中的優(yōu)化問題(解析版) 題型:解答題

用半徑為R的圓鐵皮剪一個內(nèi)接矩形,再將內(nèi)接矩形卷成一個圓柱(無底、無蓋),問使矩形邊長為多少時,其體積最大?

查看答案和解析>>

同步練習(xí)冊答案