已知數(shù)列{an}的前n項和為Sn,且Sn=1-an(n∈N*)
(1)試求{an}的通項公式;
(2)若bn=
n
an
(n∈N*)
,試求數(shù)列{bn}的前n項和Tn
(1)n=1時,a1=1-a1,a1=
1
2
,
Sn=1-an(n∈N*)①,∴Sn+1=1-an+1②,
②-①得an+1=-an+1+a n,∴an+1=
1
2
a n,
∴數(shù)列{an}是首項為a1=
1
2
,公比q=
1
2
的等比數(shù)列,
∴an=
1
2
(
1
2
)
n-1
=(
1
2
)
n

(2)bn=
n
an
=n•2n(n∈N*)

∴Tn=1×2+2×22+3×23+…+n×2n,③
2Tn=1×22+2×23+3+3×23+…+n×2n+1,④
③-④得,-Tn=2+22+23+…+2n-n×2 n+1③,
=
2(1-2n)
1-2
-n×2 n+1③,
整理得Tn=(n-1)2 n+1+2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案