【題目】由團中央學(xué)校部、全國學(xué)聯(lián)秘書處、中國青年報社共同舉辦的2018年度全國“最美中學(xué)生”尋訪活動結(jié)果出爐啦,此項活動于2018年6月啟動,面向全國中學(xué)在校學(xué)生,通過投票方式尋訪一批在熱愛祖國、勤奮學(xué)習(xí)、熱心助人、見義勇為等方面表現(xiàn)突出、自覺樹立和踐行社會主義核心價值觀的“最美中學(xué)生”.現(xiàn)隨機抽取了30名學(xué)生的票數(shù),繪成如圖所示的莖葉圖,若規(guī)定票數(shù)在65票以上(包括65票)定義為風(fēng)華組.票數(shù)在65票以下(不包括65票)的學(xué)生定義為青春組.
(1)如果用分層抽樣的方法從青春組和風(fēng)華組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在青春組的概率是多少?
(2)用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機選取4人,用表示所選4人中青春組的人數(shù),試寫出的分布列,并求出的數(shù)學(xué)期望.
【答案】(1);(2)分布列見解析,
【解析】
(1) 用A表示“至少有1人在青春組”,利用對立事件概率計算公式能求出至少有1人在青春組的概率.
(2)由題知,抽取的30名學(xué)生中有12名學(xué)生是青春組學(xué)生,抽取1名學(xué)生是青春組學(xué)生的概率為,從所有的中學(xué)生中抽取1名學(xué)生是甲組學(xué)生的概率是,服從二項分布.由此能求出的分布列、數(shù)學(xué)期望.
解:(1) 用A表示“至少有1人在青春組”,
則至少有1人在青春組的概率為;
(2)由題知,抽取的30名學(xué)生中有12名學(xué)生是青春組學(xué)生,抽取1名學(xué)生是青春組學(xué)生的概率為,
那么從所有的中學(xué)生中抽取1名學(xué)生是甲組學(xué)生的概率是,
又因為所取總體數(shù)量較多,抽取4名學(xué)生可以看出4次獨立重復(fù)實驗,于是服從二項分布.
的取值為0,1,2,3,4.且.
所以得的分布列為:
數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形ABCD為平行四邊形,且,,平面PAC.
(1)求證:平面;
(2)若異面直線PC與AD所成的角為30°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三(1)班在一次語文測試結(jié)束后,發(fā)現(xiàn)同學(xué)們在背誦內(nèi)容方面失分較為嚴重.為了提升背誦效果,班主任倡議大家在早晩讀時間站起來大聲誦讀,為了解同學(xué)們對站起來大聲誦讀的態(tài)度,對全班50名同學(xué)進行調(diào)查,將調(diào)查結(jié)果進行整理后制成如表:
考試分數(shù) | , | , | , | , | , | , |
頻數(shù) | 5 | 10 | 15 | 5 | 10 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 3 | 6 | 4 |
(1)欲使測試優(yōu)秀率為,則優(yōu)秀分數(shù)線應(yīng)定為多少分?
(2)依據(jù)第1問的結(jié)果及樣本數(shù)據(jù)研究是否贊成站起來大聲誦讀的態(tài)度與考試成績是否優(yōu)秀的關(guān)系,列出2×2列聯(lián)表,并判斷是否有的把握認為贊成與否的態(tài)度與成績是否優(yōu)秀有關(guān)系.
參考公式及數(shù)據(jù):,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點,且與內(nèi)切,設(shè)的圓心的軌跡為,
(1)求軌跡C的方程;
(2)設(shè)直線不經(jīng)過點且與曲線交于點兩點,若直線與直線的斜率之積為,判斷直線是否過定點,若過定點,求出此定點的坐標,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中“勾股容方”問題:“今有勾五步,股十二步,問勾中容方幾何?”魏晉時期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補原理給出了這個問題的一般解法:如圖1,用對角線將長和寬分別為和的矩形分成兩個直角三角形,每個直角三角形再分成一個內(nèi)接正方形(黃)和兩個小直角三角形(朱、青).將三種顏色的圖形進行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點,作直角三角形的內(nèi)接正方形對角線,過點作于點,則下列推理正確的是( )
①由圖1和圖2面積相等得;
②由可得;
③由可得;
④由可得.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)給出三個條件:①函數(shù)的圖象關(guān)于直線對稱;②函數(shù)的圖象關(guān)于點對稱;③函數(shù)的圖象上相鄰兩個最高點的距離為.從中選出兩個條件補充在下面的問題中,并以此為依據(jù)求解問題.
已知函數(shù)(,),_____,_____.求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值A,函數(shù),其中…是自然對數(shù)的底數(shù).
(1)求m的值,并判斷A是的最大值還是最小值;
(2)求的單調(diào)區(qū)間;
(3)證明:對于任意正整數(shù)n,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn和通項an滿足.
(1)求數(shù)列{an}的通項公式;
(2)等差數(shù)列{bn}中,b1=3a1,b2=2,求數(shù)列{an+bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線上位于軸兩側(cè)的不同兩點
(1)若在直線上,且使得以為頂點的四邊形恰為正方形,求該正方形的面積.
(2)求過、的切線與直線圍成的三角形面積的最小值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com