【題目】已知函數(shù) , , 求解下列問題
(1)求函數(shù) 的最大值和最小正周期;
(2)設(shè) 的內(nèi)角 的對(duì)邊分別 且 , ,若 求 值.
【答案】
(1)
解: f(x)=sinxcosx-cosx-
=(2sinxcosx)-(1+cos2x)-
=sin2x-cos2x-1
=sin2xcos-cos2xsin-1
=sin(2x-)-1
故 f(x)的最小正周期是π,最小值是 -2.
(2)
解: f(C)=sin(2C-)-2=-1,
∴sin(2C-)=1,
∵0<C<π,
∴0<2C<2π,
∴-<2C-<,
∴2C-=,
∴C=.
∵sin(A+C)=2sinA,
∴sinB=2sinA,由正弦定理=, ①
∵由余弦定理得:c=a+b-2abcos,即a+b-ab=9,②
∴聯(lián)立①、②解得a=,b=2
【解析】分析:(1)利用兩角和與差的三角函數(shù)公式及二倍角公式將 化成 的形式,再根據(jù)正弦函數(shù)的性質(zhì)求得.(2)由 ,結(jié)合余弦定理得: ;由 結(jié)合正弦定理得 ,解方程組可得 值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩角和與差的正弦公式和二倍角的正弦公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握兩角和與差的正弦公式:;二倍角的正弦公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)結(jié)論,其中正確的個(gè)數(shù)為( ). ①已 ,則
②過原點(diǎn)作曲線 的切線,則切線方程為 (其中e為自然對(duì)數(shù)的底數(shù));
③已知隨機(jī)變 ,則
④已知n為正偶數(shù),用數(shù)學(xué)歸納法證明等式 時(shí),若假設(shè) 時(shí),命題為真,則還需利用歸納假設(shè)再證明 時(shí)等式成立,即可證明等式對(duì)一切正偶數(shù)n都成立.
⑤在回歸分析中,常用 來刻畫回歸效果,在線性回歸模型中, 表示解釋變量對(duì)于預(yù)報(bào)變量變化的貢獻(xiàn)率 越接近1,表示回歸的效果越好.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣1,1)上的奇函數(shù)f(x)是減函數(shù)滿足f(1﹣a)+f(1﹣2a)<0,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的個(gè)數(shù)是( )
①向量 與 是共線向量,則A、B、C、D必在同一直線上;
②向量 與向量 平行,則 方向相同或相反;
③若下列向量 、 滿足 ,且 與 同向,則 ;
④若 ,則 的長度相等且方向相同或相反;
⑤由于零向量方向不確定,故不能與任何向量平行.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為;曲線的極坐標(biāo)方程為;曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標(biāo)方程、曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)若直線與曲線曲線在第一象限的交點(diǎn)分別為,求之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)求在上的單調(diào)區(qū)間;
(Ⅱ)求在(為自然對(duì)數(shù)的底數(shù))上的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣﹣2lnx.
(Ⅰ)若f(x)在x=2時(shí)有極值,求實(shí)數(shù)a的值和f(x)的極大值;
(Ⅱ)若f(x)在定義域上是減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com