【題目】已知函數(shù).

1)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn);

2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;

3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

【答案】(1;(2;(3.

【解析】試題分析:(1) 當(dāng)時(shí), ,求導(dǎo),由求出切線(xiàn)斜率及點(diǎn),即可求出切線(xiàn)方程;(2)由在定義域區(qū)間上恒成立得,利用基本不等式求出函數(shù)的最大值,即可求出的取值范圍;(3)構(gòu)造函數(shù),由在區(qū)間上,函數(shù)至少存在一點(diǎn)使,即由在區(qū)間,求出的范圍即可.

試題解析:已知函數(shù).

1,

, , 故切線(xiàn)方程為: .

2,由在定義域內(nèi)為增函數(shù),所以上恒成立,,對(duì)恒成立,設(shè), ,

易知, 上單調(diào)遞增,在上單調(diào)遞減,則,

,即.

3)設(shè)函數(shù),

則原問(wèn)題上至少存在一點(diǎn),使得

,

當(dāng)時(shí), ,則上單調(diào)遞增, ,舍;

當(dāng)時(shí), ,

,, ,則,舍; 當(dāng)時(shí), ,

上單調(diào)遞增, ,整理得,

綜上, .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】出一份道題的數(shù)學(xué)試卷,試卷內(nèi)的道題是這樣產(chǎn)生的從含有道選擇題的題庫(kù)中隨機(jī)抽道填空題的題庫(kù)中隨機(jī)抽;道解答題的題庫(kù)中隨機(jī)抽.使用合適的方法確定這套試卷的序號(hào)(選擇題編號(hào)為填空題編號(hào)為,解答題編號(hào)為).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的焦距為,點(diǎn)上.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)點(diǎn)上,點(diǎn)的軌跡為曲線(xiàn),過(guò)原點(diǎn)作直線(xiàn)與曲線(xiàn)交于、兩點(diǎn),點(diǎn),證明: 為定值,并求出定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x2-3x+lnx

(Ⅰ)求函數(shù)fx)的極值;

(Ⅱ)若對(duì)于任意的x1,x2∈(1,+∞),x1x2,都有恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)當(dāng)時(shí),求的最小值;

(2)存在時(shí),使得不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓和直線(xiàn),橢圓的離心率,坐標(biāo)原點(diǎn)到直線(xiàn)的距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知定點(diǎn),若直線(xiàn)過(guò)點(diǎn)且與橢圓相交于兩點(diǎn),試判斷是否存在直線(xiàn),使以為直徑的圓過(guò)點(diǎn)?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是長(zhǎng)軸長(zhǎng)為的橢圓 上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn), 為橢圓的右頂點(diǎn),點(diǎn)為線(xiàn)段的中點(diǎn),且直線(xiàn)的斜率之積恒為.

(1)求橢圓的方程;

(2)設(shè)過(guò)左焦點(diǎn)且不與坐標(biāo)軸垂直的直線(xiàn)交橢圓于兩點(diǎn),線(xiàn)段的垂直平分線(xiàn)與軸交于點(diǎn),點(diǎn)橫坐標(biāo)的取值范圍是,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三條直線(xiàn)l1:4xy-4=0,l2mxy=0,l3:2x-3my-4=0.

(1)若直線(xiàn)l1,l2,l3交于一點(diǎn),求實(shí)數(shù)m的值;

(2)若直線(xiàn)l1,l2l3不能?chē)扇切,求?shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市從現(xiàn)有甲、乙兩種酸奶的日銷(xiāo)售量(單位:箱)的1200個(gè)數(shù)據(jù)(數(shù)據(jù)均在區(qū)間內(nèi))中,按照5%的比例進(jìn)行分層抽樣,統(tǒng)計(jì)結(jié)果按, , , 分組,整理如下圖:

(Ⅰ)寫(xiě)出頻率分布直方圖(圖乙)中的值;記所抽取樣本中甲種酸奶與乙種酸奶日銷(xiāo)售量的方差分別為, ,試比較的大。ㄖ恍鑼(xiě)出結(jié)論);

(Ⅱ)從甲種酸奶日銷(xiāo)售量在區(qū)間的數(shù)據(jù)樣本中抽取3個(gè),記在內(nèi)的數(shù)據(jù)個(gè)數(shù)為,求的分布列;

(Ⅲ)估計(jì)1200個(gè)日銷(xiāo)售量數(shù)據(jù)中,數(shù)據(jù)在區(qū)間中的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案