在極坐標(biāo)系中,點(diǎn)(1,0))到直線ρ(3cosθ+4sinθ)=2的距離是
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專(zhuān)題:坐標(biāo)系和參數(shù)方程
分析:把直線的極坐標(biāo)方程化為直角坐標(biāo)方程,再利用點(diǎn)到直線的距離公式即可得出.
解答: 解:直線ρ(3cosθ+4sinθ)=2化為3x+4y-2=0,
∴點(diǎn)(1,0))到直線ρ(3cosθ+4sinθ)=2的距離=
|3-2|
32+42
=
1
5

故答案為:
1
5
點(diǎn)評(píng):本題考查了把極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式|x+2|+|x-2|≥a+
4
a
對(duì)任意的x恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1的參數(shù)方程為
x=cosρ
y=sinρ
(ρ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=2cos(θ+
π
3
),則兩圓的公共弦的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:
(1)cos2(A+B)-sin2(A-B)=cos2Acos2B;
(2)cos2θ(1-tan2θ)=cos2θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ex•sin3x的導(dǎo)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos2α,
3
2
),
b
=(
1
2
,sin2α)
,且-
π
2
≤α≤
π
2
,則“α=
12
”是“
a
b
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=2,對(duì)于任意m、n∈N+,都有am+n=am+an+2,Sn是{an}的前n項(xiàng)和,則
lim
n→∞
nan
Sn+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

MC⊥菱形ABCD所在平面,那么MA與BD的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2cos2x-sin2x的最小正周期為( 。
A、2π
B、
π
2
C、π
D、4π

查看答案和解析>>

同步練習(xí)冊(cè)答案