(2013•靜安區(qū)一模)機(jī)器人“海寶”在某圓形區(qū)域表演“按指令行走”.如圖所示,“海寶”從圓心O出發(fā),先沿北偏西arcsin
1213
方向行走13米至點(diǎn)A處,再沿正南方向行走14米至點(diǎn)B處,最后沿正東方向行走至點(diǎn)C處,點(diǎn)B、C都在圓O上.則在以圓心O為坐標(biāo)原點(diǎn),正東方向為x軸正方向,正北方向為y軸正方向的直角坐標(biāo)系中圓O的方程為
x2+y2=225
x2+y2=225
分析:如圖所示:由題意可得sinθ=
12
13
,OA=13,利用直角三角形中的邊角關(guān)系求得cos∠AOD、OD、AD 的值,可得BD 的值,再求得 OB2=OD2+BD2 的值,即可得到圓O的方程.
解答:解:如圖所示:設(shè)OA與正北方向的夾角為θ,則由題意可得sinθ=
12
13
,OA=13,
∴cos∠AOD=sinθ=
12
13
,OD=OA•cos∠AOD=13×
12
13
=12,AD=OA•sin∠AOD=13×
5
12
=5,
∴BD=14-AD=9,∴OB2=OD2+BD2=144+81=225,
故圓O的方程為 x2+y2=225,
故答案為 x2+y2=225.
點(diǎn)評:本題主要考查直角三角形中的邊角關(guān)系,求圓的標(biāo)準(zhǔn)方程,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)已知O是△ABC外接圓的圓心,A、B、C為△ABC的內(nèi)角,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m•
AO
,則m的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)設(shè)P是函數(shù)y=x+
2
x
(x>0)的圖象上任意一點(diǎn),過點(diǎn)P分別向直線y=x和y軸作垂線,垂足分別為A、B,則
PA
PB
的值是
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)已知函數(shù)f(x)=
1
2
sin(2ax+
7
)的最小正周期為4π,則正實數(shù)a=
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)等比數(shù)列{an}(n∈N*)中,若a2=
1
16
,a5=
1
2
,則a12=
64
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)兩條直線l1:3x-4y+9=0和l2:5x+12y-3=0的夾角大小為
arccos
33
65
arccos
33
65

查看答案和解析>>

同步練習(xí)冊答案