已知函數(shù)均為正常數(shù)),設(shè)函數(shù)處有極值.
(1)若對(duì)任意的,不等式總成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

(1);(2).

解析試題分析:本題主要考查導(dǎo)數(shù)的應(yīng)用、不等式、三角函數(shù)等基礎(chǔ)知識(shí),考查思維能力、運(yùn)算能力、分析問(wèn)題與解決問(wèn)題的能力,考查函數(shù)思想、轉(zhuǎn)化思想等數(shù)學(xué)思想方法.第一問(wèn),對(duì)求導(dǎo),因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/74/9/shnos.png" style="vertical-align:middle;" />在有極值,所以的根,列出表達(dá)式,求出,不等式恒成立等價(jià)于恒成立,所以下面的主要任務(wù)是求的最大值,對(duì)求導(dǎo),利用三角公式化簡(jiǎn),求的最值,判斷的正負(fù),從而判斷的單調(diào)性,求出最大值;第二問(wèn),由單調(diào)遞增,所以解出的取值范圍,由已知上單調(diào)遞增,所以得出,利用子集關(guān)系列出不等式組,解出.
試題解析:∵,∴,
由題意,得,解得.     2分
(1)不等式等價(jià)于對(duì)于一切恒成立.      4分

     5分
,∴,∴,∴
,從而上是減函數(shù).
,于是,故的取值范圍是.     6分
(2),由,得,即
.     7分
∵函數(shù)在區(qū)間上單調(diào)遞增,
,
則有,,     9分
,,
∴只有時(shí),適合題意,故的取值范圍為.     12分
考點(diǎn):1.導(dǎo)數(shù)的運(yùn)算;2.兩角和的正弦公式;3.三角函數(shù)的最值;4.恒成立問(wèn)題;5.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),其對(duì)應(yīng)的圖像為曲線C;若曲線C過(guò),且在點(diǎn)處的切斜線率
(1)求函數(shù)的解析式
(2)證明不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若曲線有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)求函數(shù)上的最小值;
(2)對(duì)一切恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在上的函數(shù),其中為常數(shù).
(1)當(dāng)是函數(shù)的一個(gè)極值點(diǎn),求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),若,在處取得最大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)證明:都有。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(I)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式其中為常數(shù).己知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得利潤(rùn)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案