在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC,bcosB,c cosA成等差數(shù)列.
(I)求角B的大。
(Ⅱ)若b=,試求△ABC面積S的最大值.
【答案】分析:(I)由題意可得2bcosB=acosC+c•cosA,由正弦定理可得 2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,解得cosB=,從而求出角B.
(Ⅱ)由余弦定理可得3=a2+c2-ac,再由 a2+c2≥2ac,可得 3≥ac,故有ABC面積S=,由此得到S的最大值.
解答:解:(I)由題意可得,在△ABC中,2bcosB=acosC+c•cosA,由正弦定理可得 2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,
∴cosB=,∴角B=
∵(Ⅱ)若b=,∵B=,由余弦定理可得 b2=a2+c2-2ac•cosB,即 3=a2+c2-ac.
再由  a2+c2≥2ac,可得 3≥ac,∴△ABC面積S==,
故△ABC面積S的最大值為
點(diǎn)評:本題主要考查等差數(shù)列的定義和性質(zhì),利用正弦定理和余弦定理解三角形,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案