【題目】已知點F1為橢圓1ab0)的左焦點,在橢圓上,PF1x.

1)求橢圓的方程;

2)已知直線lykx+m與橢圓交于(12),B兩點,O為坐標原點,且OAOB,O到直線l的距離是否為定值?若是,求出該定值;若不是,請說明理由.

【答案】12)是定值,定值為

【解析】

1)由PF1x軸可得c1,即可得橢圓的左右焦點的坐標,由橢圓的定義求出a的值,由a,b,c的關系求出ab的值,進而求出橢圓的方程;

2)將直線l與橢圓的方程聯(lián)立求出兩根之積,由OAOB,可得0,可得km的關系,求出原點到直線的距離的表達式,可得為定值.

1)令焦距為2,依題意可得F1(﹣1,0),右焦點F21,0),

,所以

所以橢圓方程為;

2)設Ax1y1),Bx2,y2),

整理可得(2k2+1x2+4kmx+2m220

.

所以y1y2=(kx1+m)(kx2+m)=k2x1x2+kmx1+x2+m2k2kmm2,

,

3m22k2+1),

所以原點O到直線l的距離為,為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,,點的中點.

求證:平面;

若直線與平面所成角為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠加工的零件按箱出廠,每箱有10個零件,在出廠之前需要對每箱的零件作檢驗,人工檢驗方法如下:先從每箱的零件中隨機抽取4個零件,若抽取的零件都是正品或都是次品,則停止檢驗;若抽取的零件至少有1個至多有3個次品,則對剩下的6個零件逐一檢驗.已知每個零件檢驗合格的概率為0.8,每個零件是否檢驗合格相互獨立,且每個零件的人工檢驗費為2.

1)設1箱零件人工檢驗總費用為元,求的分布列;

2)除了人工檢驗方法外還有機器檢驗方法,機器檢驗需要對每箱的每個零件作檢驗,每個零件的檢驗費為1.6.現(xiàn)有1000箱零件需要檢驗,以檢驗總費用的數(shù)學期望為依據(jù),在人工檢驗與機器檢驗中,應該選擇哪一個?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一種類型的題目,此類題目有六個選項A、B、C、D、E、F,其中有三個正確選項,滿分6分,賦分標準為每選對一個得2分,每選錯一個扣3分,最低得分為0”.在某校的一次測試中出現(xiàn)了這種類型的題目,已知此題的正確答案是A、CD,假定考生作答的答案中選項的個數(shù)不超過三個.

1)若甲同學只能判斷選項A、D是正確的,現(xiàn)在他有兩種選擇:一種是將A、D作為答案,另一種是在B、C、E、F這四個選項中任選一個與A、D組成一個含三個選項的答案.則甲同學的最佳選擇是哪一種?請說明理由;

2)若乙同學無法判斷所有選項,他決定在6個選項中任選3個作為答案:

i)設乙同學此題得分為分,求的分布列;

ii)已知有20名和乙同學情況相同的同學,且這20名考生答案互不相同,他們此題的平均得分為a分,現(xiàn)從這20名考生中任選3名考生,計算得到這3人平均得分為b分,試求a的值及的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為:,傾斜角為銳角的直線l過點與單位圓相切.

1)求曲線C的直角坐標方程和直線l的參數(shù)方程;

2)設直線l與曲線C交于A,B兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,側(cè)棱垂直于底面,,的中點,平行于,平行于面,.

(1)求的長;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們正處于一個大數(shù)據(jù)飛速發(fā)展的時代,對于大數(shù)據(jù)人才的需求也越來越大,其崗位大致可分為四類:數(shù)據(jù)開發(fā)、數(shù)據(jù)分析、數(shù)據(jù)挖掘、數(shù)據(jù)產(chǎn)品.某市2019年這幾類工作崗位的薪資(單位:萬元/月)情況如下表所示:

由表中數(shù)據(jù)可得該市各類崗位的薪資水平高低情況為(

A.數(shù)據(jù)挖掘>數(shù)據(jù)開發(fā)>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)分析

B.數(shù)據(jù)挖掘>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)開發(fā)>數(shù)據(jù)分析

C.數(shù)據(jù)挖掘>數(shù)據(jù)開發(fā)>數(shù)據(jù)分析>數(shù)據(jù)產(chǎn)品

D.數(shù)據(jù)挖掘>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)分析>數(shù)據(jù)開發(fā)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)設的內(nèi)角的對應邊分別為,且,若向量與向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面PAC⊥平面ABC是以AC為斜邊的等腰直角三角形,E,F,O分別為PA,PB,AC的中點,.

1)設GOC的中點,證明:∥平面;

2)證明:在內(nèi)存在一點M,使FM⊥平面BOE,求點MOA,OB的距離.

查看答案和解析>>

同步練習冊答案