定義新運(yùn)算?:當(dāng)a b時(shí),a?ba;當(dāng)a<b時(shí),a?bb2,則f(x)=(1?x)x-(2?x),x∈[-2,2]的最小值等于        。

 

【答案】

【解析】

試題分析:由題意知,當(dāng)時(shí),,當(dāng)時(shí),,

在定義域上都為增函數(shù),

所以的最小值為

考點(diǎn):分段函數(shù)的解析式求法及其圖象的作法;函數(shù)的最值及其幾何意義.

點(diǎn)評(píng):本題考查分段函數(shù),以及函數(shù)的最值及其幾何意義,考查函數(shù)單調(diào)性及導(dǎo)數(shù)求最值,是基礎(chǔ)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、在實(shí)數(shù)的原有運(yùn)算中,我們補(bǔ)充定義新運(yùn)算“⊕”如下:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2.設(shè)函數(shù)f(x)=(1⊕x)x-(2⊕x),x∈[-2,2],則函數(shù)f(x)的值域?yàn)?div id="tn7f1hu" class="quizPutTag">[-4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、在實(shí)數(shù)的原有運(yùn)算法則中,我們補(bǔ)充定義新運(yùn)算“⊕”如下:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2.則函數(shù)f(x)=(1⊕x)•x-(2⊕x)(x∈[-2,2])的最大值等于(“•”和“-”仍為通常的乘法和減法)(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實(shí)數(shù)的原有運(yùn)算法則下,我們定義新運(yùn)算“⊕”為:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2.則函數(shù)f(x)=(1⊕x)x-(2⊕x)(其中x∈[-2,2])的最大值等于(上式中“•”和“-”仍為通常的乘法和減法)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實(shí)數(shù)運(yùn)算中,定義新運(yùn)算“⊕”如下:當(dāng)a≥b時(shí),a⊕b=a; 當(dāng)a<b時(shí),a⊕b=b2.則函數(shù)f(x)=(1⊕x)+(2⊕x)(其中x∈[-2,3])的最大值是( 。ā+”仍為通常的加法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實(shí)數(shù)的原有運(yùn)算法則(“•”和“-”仍為通常的乘法和減法)中,我們補(bǔ)充定義新運(yùn)算“⊕”如下:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2.則當(dāng)x∈[-2,2]時(shí),函數(shù)f(x)=(1⊕x)•x-(2⊕x)的最大值等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案