設(shè)直線l:2x+y-2=0與橢圓x2+
y2
4
=1的交點(diǎn)為A、B,點(diǎn)P是橢圓上的動(dòng)點(diǎn),則使△PAB面積為
1
3
的點(diǎn)P的個(gè)數(shù)為( 。
A、1B、2C、3D、4
考點(diǎn):直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:把直線方程與橢圓方程聯(lián)立求得交點(diǎn)A和B的坐標(biāo),利用兩點(diǎn)間的距離公式求出AB的長(zhǎng),再根據(jù)三角形的面積求出AB邊上的高,設(shè)出P的坐標(biāo),利用點(diǎn)到直線的距離公式表示出P到直線l的距離即為AB邊上的高,得到關(guān)于a和b的方程,把P代入橢圓方程得到關(guān)于a與b的另一個(gè)關(guān)系式,兩者聯(lián)立利用根的判別式判斷出a與b的值有幾對(duì)即可得到交點(diǎn)有幾個(gè).
解答: 解:聯(lián)立
2x+y-2=0
x2+
y2
4
=1
,解得
x=0
y=2
x=1
y=0
,則A(0,2),B(1,0),
∴AB=
(0-1)2+(2-0)2
=
5

∵△PAB的面積為
1
3
,
AB邊上的高為
2
5
15

設(shè)P的坐標(biāo)為(a,b),代入橢圓方程得:a2+
b2
4
=1
,
P到直線2x+y-2=0的距離d=
|2a+b-2|
5
=
2
5
15
,即6a+3b-8=0或6a+3b-4=0;
聯(lián)立得:
6a+3b-8=0
a2+
b2
4
=1
①或
6a+3b-4=0
a2+
b2
4
=1
②,
把①中的b消去得:18a2-24a+7=0,
∵△=(-24)2-4×18×7=72>0,∴a有兩個(gè)不相等的根,則對(duì)應(yīng)的b也有兩個(gè)不等的根,滿足題意的P的坐標(biāo)有兩個(gè);
由②消去b得:18a2-12a-5=0,
∵△=(-12)2+4×18×5>0,∴a有兩個(gè)不相等的根,則對(duì)應(yīng)的b也有兩個(gè)不等的根,滿足題意的P的坐標(biāo)有兩個(gè).
綜上,使△PAB面積為
1
3
的點(diǎn)P的個(gè)數(shù)為4.
故選:B.
點(diǎn)評(píng):本題考查學(xué)生會(huì)求直線與橢圓的交點(diǎn)坐標(biāo),靈活運(yùn)用點(diǎn)到直線的距離公式化簡(jiǎn)求值.同時(shí)要求學(xué)生會(huì)利用根的判別式判斷方程解的情況,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程
1
2
x2+
2a
x-
1
2
b+3=0與
1
4
x2+
2b
x-a+6=0在R上都有解,則23a•2b 的最小值為( 。
A、256B、128
C、64D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)M(2,1)作直線l交于雙曲線x2-
y2
2
=1于A,B兩點(diǎn),且M為AB的中點(diǎn),則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(g(x))=9x+3,g(x)=3x+1,則f(x)的解析式為( 。
A、27x+12B、9x+3
C、27x+10D、3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí),f(x)=x.則f(1)+f(2)+…+f(2014)=( 。
A、335B、336
C、337D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右焦點(diǎn)F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為
3
6
a2 (O為坐標(biāo)原點(diǎn)),則雙曲線的兩條漸近線的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個(gè)三位正整數(shù)的中間一個(gè)數(shù)字比另兩個(gè)數(shù)字小,如305,414,879等,則稱這個(gè)三位數(shù)為凹數(shù),那么所有凹數(shù)的個(gè)數(shù)是(  )
A、240B、285
C、729D、920

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺(tái)連續(xù)播放6個(gè)廣告,其中4個(gè)不同的商業(yè)廣告和2個(gè)不同的奧運(yùn)宣傳廣告,要求最后播放的必須是奧運(yùn)宣傳廣告,且2個(gè)奧運(yùn)宣傳廣告不能連續(xù)播放,則不同的播放方式有( 。
A、720種B、48種
C、96種D、192種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列關(guān)于x的不等式:
(1)x2-(a+
1
a
)x+1<0(a≠0);
(2)
ax-1
x-a
<0(a∈R).

查看答案和解析>>

同步練習(xí)冊(cè)答案