如圖①,一條寬為l km的兩平行河岸有村莊A和供電站C,村莊B與A、C的直線距離都是2km,BC與河岸垂直,垂足為D.現(xiàn)要修建電纜,從供電站C向村莊A、B供電.修建地下電纜、水下電纜的費(fèi)用分別是2萬元/km、4萬元/km
(Ⅰ)已知村莊A與B原來鋪設(shè)有舊電纜仰,需要改造,舊電纜的改造費(fèi)用是0.5萬元/km.現(xiàn)決定利用舊電纜修建供電線路,并要求水下電纜長度最短,試求該方案總施工費(fèi)用的最小值.
(Ⅱ)如圖②,點E在線段AD上,且鋪設(shè)電纜的線路為CE、EA、EB.若∠DCE=θ (0≤θ≤),試用θ表示出總施工費(fèi)用y(萬元)的解析式,并求y的最小值.
【答案】分析:(Ⅰ)由已知可得△ABC為等邊三角形.因為CD⊥AD,所以水下電纜的最短線路為CD.過D作DE⊥AB于E,可知地下電纜的最短線路為DE、AB.由此能求出該方案的總費(fèi)用.
(Ⅱ)因為∠DCE=θ,0≤θ,所以CE=EB=,ED=tanθ,AE=-tanθ.(7分)則y=2×+2,令,則g′(θ)=,由此能求出施工總費(fèi)用的最小值.
解答:(本小題滿分13分)
解:(Ⅰ)由已知可得△ABC為等邊三角形.
因為CD⊥AD,所以水下電纜的最短線路為CD.
過D作DE⊥AB于E,可知地下電纜的最短線路為DE、AB.(3分)
又CD=1,DE=,AB=2,
故該方案的總費(fèi)用為
1×4++2×0.5=5+.(萬元)            …(6分)
(Ⅱ)因為∠DCE=θ,0≤θ
所以CE=EB=,ED=tanθ,AE=-tanθ.(7分)
則y=×4+×2+(-tanθ)×2
=2×+2,(9分)
,
則g′(θ)=
=,(10分)
因為0,所以0,
,,
當(dāng)0,即0≤θ<θ1時,g′(θ)<0,
當(dāng),即時,g′(x)>0,
所以g(θ)min=g(θ1)==2
從而y≥4+2,(12分)
此時ED=tanθ1=,
因此施工總費(fèi)用的最小值為(4+2)萬元,其中ED=.(13分)
點評:本題考查函數(shù)在生產(chǎn)實際中的應(yīng)用,綜合性強(qiáng),難度大.解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福州模擬)如圖①,一條寬為l km的兩平行河岸有村莊A和供電站C,村莊B與A、C的直線距離都是2km,BC與河岸垂直,垂足為D.現(xiàn)要修建電纜,從供電站C向村莊A、B供電.修建地下電纜、水下電纜的費(fèi)用分別是2萬元/km、4萬元/km
(Ⅰ)已知村莊A與B原來鋪設(shè)有舊電纜仰,需要改造,舊電纜的改造費(fèi)用是0.5萬元/km.現(xiàn)決定利用舊電纜修建供電線路,并要求水下電纜長度最短,試求該方案總施工費(fèi)用的最小值.
(Ⅱ)如圖②,點E在線段AD上,且鋪設(shè)電纜的線路為CE、EA、EB.若∠DCE=θ (0≤θ≤
P3
),試用θ表示出總施工費(fèi)用y(萬元)的解析式,并求y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三質(zhì)量檢測理科數(shù)學(xué) 題型:解答題

(本小題滿分1 3分)

如圖①,一條寬為l km的兩平行河岸有村莊A和供電站C,村莊B與A、C的直線距離都是2km,BC與河岸垂直,垂足為D.現(xiàn)要修建電纜,從供電站C向村莊A、B供電.修建地下電纜、水下電纜的費(fèi)用分別是2萬元/km、4萬元/km.

    (Ⅰ)已知村莊A與B原來鋪設(shè)有舊電纜仰,需要改造,舊電纜的改造費(fèi)用是0.5萬元/km.現(xiàn)

決定利用舊電纜修建供電線路,并要求水下電纜長度最短,試求該方案總施工費(fèi)用的最小值.

(Ⅱ)如圖②,點E在線段AD上,且鋪設(shè)電纜的線路為CE、EA、EB.若∠DCE=θ (0≤θ≤),試用θ表示出總施工費(fèi)用y(萬元)的解析式,并求y的最小值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,一條直角走廊寬為a米.現(xiàn)有一轉(zhuǎn)動靈活的平板車,其平板面為矩形,它的寬為b(0<b<a)米.

(第20題圖)

(1)若平板車卡在直角走廊內(nèi),且∠CAB=θ,試求平板面的長l;

(2)若平板車要想順利通過直角走廊,其長度不能超過多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省福州市高三3月質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖①,一條寬為l km的兩平行河岸有村莊A和供電站C,村莊B與A、C的直線距離都是2km,BC與河岸垂直,垂足為D.現(xiàn)要修建電纜,從供電站C向村莊A、B供電.修建地下電纜、水下電纜的費(fèi)用分別是2萬元/km、4萬元/km
(Ⅰ)已知村莊A與B原來鋪設(shè)有舊電纜仰,需要改造,舊電纜的改造費(fèi)用是0.5萬元/km.現(xiàn)決定利用舊電纜修建供電線路,并要求水下電纜長度最短,試求該方案總施工費(fèi)用的最小值.
(Ⅱ)如圖②,點E在線段AD上,且鋪設(shè)電纜的線路為CE、EA、EB.若∠DCE=θ (0≤θ≤),試用θ表示出總施工費(fèi)用y(萬元)的解析式,并求y的最小值.

查看答案和解析>>

同步練習(xí)冊答案