已知f(x)=|2x-1|+ax-5(a是常數(shù),a∈R)
①當(dāng)a=1時(shí)求不等式f(x)≥0的解集.
②如果函數(shù)y=f(x)恰有兩個(gè)不同的零點(diǎn),求a的取值范圍.
【答案】分析:①當(dāng)a=1時(shí),f(x)=,把 的解集取并集,即得所求.
②由f(x)=0得|2x-1|=-ax+5,作出y=|2x-1|和y=-ax+5 的圖象,觀察可以知道,當(dāng)-2<a<2時(shí),這兩個(gè)函數(shù)的圖象有兩個(gè)不同的交點(diǎn),由此得到a的取值范圍.
解答:解:①當(dāng)a=1時(shí),f(x)=|2x-1|+x-5=
解得x≥2; 由 解得x≤-4.
∴f(x)≥0的解為{x|x≥2或x≤-4}.(5分)
②由f(x)=0得|2x-1|=-ax+5.(7分)
作出y=|2x-1|和y=-ax+5 的圖象,觀察可以知道,當(dāng)-2<a<2時(shí),這兩個(gè)函數(shù)的圖象有兩個(gè)不同的交點(diǎn),
函數(shù)y=f(x)有兩個(gè)不同的零點(diǎn).
故a的取值范圍是(-2,2).(10分)

點(diǎn)評:本題考查函數(shù)零點(diǎn)的判定定理,帶有絕對值的函數(shù),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)y=f(x),x∈D,若存在常數(shù)C,對任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C
,則稱函數(shù)f(x)在D上的幾何平均數(shù)為C.已知f(x)=2x,x∈[1,2],則函數(shù)f(x)=2x在[1,2]上的幾何平均數(shù)為( 。
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x可以表示成一個(gè)奇函數(shù)g(x)與一個(gè)偶函數(shù)h(x)之和,若關(guān)于x的不等式ag(x)+h(2x)≥0對于x∈[1,2]恒成立,則實(shí)數(shù)a的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•大連一模)選修4-5:不等式選講
已知f(x)=|2x-1|+ax-5(a是常數(shù),a∈R)
(Ⅰ)當(dāng)a=1時(shí)求不等式f(x)≥0的解集.
(Ⅱ)如果函數(shù)y=f(x)恰有兩個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x+3,g(x)=4x-5,則使得f(h(x))=g(x)成立的h(x)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)已知f(x)=2x+x,則f-1(6)=
2
2

查看答案和解析>>

同步練習(xí)冊答案