【題目】如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則( )
A.在點F的運動過程中,存在EF//BC1
B.在點M的運動過程中,不存在B1M⊥AE
C.四面體EMAC的體積為定值
D.四面體FA1C1B的體積不為定值
科目:高中數(shù)學 來源: 題型:
【題目】如果一個棱錐的底面是正方形,且頂點在底面內(nèi)的射影是底面的中心,那么這樣的棱錐叫正四棱錐.若一正四棱錐的體積為18,則該正四棱錐的側(cè)面積最小時,以下結(jié)論正確的是( ).
A.棱的高與底邊長的比為B.側(cè)棱與底面所成的角為
C.棱錐的高與底面邊長的比為D.側(cè)棱與底面所成的角為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在綜合素質(zhì)評價的某個維度的測評中,依據(jù)評分細則,學生之間相互打分,最終將所有的數(shù)據(jù)合成一個分數(shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學生的在該維度的測評結(jié)果,在畢業(yè)班中隨機抽出一個班的數(shù)據(jù).該班共有60名學生,得到如下的列聯(lián)表:
優(yōu)秀 | 合格 | 總計 | |
男生 | 6 | ||
女生 | 18 | ||
合計 | 60 |
已知在該班隨機抽取1人測評結(jié)果為優(yōu)秀的概率為.
(1)完成上面的列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結(jié)果有關(guān)系?
(3)現(xiàn)在如果想了解全校學生在該維度的表現(xiàn)情況,采取簡單隨機抽樣方式在全校學生中抽取少數(shù)一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.
附:
0.25 | 0.10 | 0.025 | |
1.323 | 2.706 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓右焦點F的坐標為,點在橢圓C上,過F且斜率為的直線l與橢圓C相交于A,B兩點,線段AB的中點為M,O為坐標原點.
(I)求橢圓C的方程;
(Ⅱ)設線段AB的垂直平分線與x軸、y軸分別相交于點C,D.若與的面積相等,求直線l的斜率k.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關(guān)于x的方程恰有5個相異的實根,則實數(shù)a的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:函數(shù)在上單調(diào)遞增;命題:函數(shù)在上單調(diào)遞減.
(Ⅰ)若是真命題,求實數(shù)的取值范圍;
(Ⅱ)若或為真命題,且為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于數(shù)列,若從第二項起的每一項均大于該項之前的所有項的和,則稱為數(shù)列.
(1)若的前項和,試判斷是否是數(shù)列,并說明理由;
(2)設數(shù)列是首項為、公差為的等差數(shù)列,若該數(shù)列是數(shù)列,求的取值范圍;
(3)設無窮數(shù)列是首項為、公比為的等比數(shù)列,有窮數(shù)列,是從中取出部分項按原來的順序所組成的不同數(shù)列,其所有項和分別為,,求是數(shù)列時與所滿足的條件,并證明命題“若且,則不是數(shù)列”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com