【題目】已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關(guān)于x的方程恰有5個相異的實根,則實數(shù)a的取值范圍為________.
【答案】
【解析】
作出圖象,求出方程的根,分類討論的正負(fù),數(shù)形結(jié)合即可.
當(dāng)時,令,解得,
所以當(dāng)時,,則單調(diào)遞增,當(dāng)時,,則單調(diào)遞減,
當(dāng)時,單調(diào)遞減,且,
作出函數(shù)的圖象如圖:
(1)當(dāng)時,方程整理得,只有2個根,不滿足條件;
(2)若,則當(dāng)時,方程整理得,
則,,此時各有1解,
故當(dāng)時,方程整理得,
有1解同時有2解,即需,,因為(2),故此時滿足題意;
或有2解同時有1解,則需,由(1)可知不成立;
或有3解同時有0解,根據(jù)圖象不存在此種情況,
或有0解同時有3解,則,解得,
故,
(3)若,顯然當(dāng)時,和均無解,
當(dāng)時,和無解,不符合題意.
綜上:的范圍是,
故答案為:,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間與極值.
(2)當(dāng)時,是否存在,使得成立?若存在,求實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐.
Ⅰ求證;
Ⅱ若平面ABCD.
求二面角的大;
在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考方案規(guī)定,普通高中學(xué)業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計入高考總成績,即“選擇考”成績根據(jù)學(xué)生考試時的原始卷面分?jǐn)?shù),由高到低進行排序,評定為、、、、五個等級.某試點高中2018年參加“選擇考”總?cè)藬?shù)是2016年參加“選擇考”總?cè)藬?shù)的2倍,為了更好地分析該校學(xué)生“選擇考”的水平情況,統(tǒng)計了該校2016年和2018年“選擇考”成績等級結(jié)果,得到如下圖表:
針對該!斑x擇考”情況,2018年與2016年比較,下列說法正確的是( )
A. 獲得A等級的人數(shù)減少了B. 獲得B等級的人數(shù)增加了1.5倍
C. 獲得D等級的人數(shù)減少了一半D. 獲得E等級的人數(shù)相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解運動健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個月的健身后,他們的體重情況如三維餅圖(2)所示.對比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是( )
A.他們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)不變
B.他們健身后,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了4人
C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg,100kg)
D.他們健身后,原來體重在[110kg,120kg]內(nèi)的肥胖者體重都至少減輕了10kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班圖書角有文學(xué)名著類圖書5本,學(xué)科輔導(dǎo)書類圖書3本,其它類圖書2本,共10本不同的圖書,該班從圖書角的10本不同圖書中隨機挑選3本不同圖書參加學(xué);顒.
(1)求選出的三本圖書來自于兩個不同類別的概率;
(2)設(shè)隨機變量X表示選出的3本圖書中,文學(xué)名著類本數(shù)與學(xué)科輔導(dǎo)類本數(shù)差的絕對值,求隨機變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是國家統(tǒng)計局公布的2013-2018年入境游客(單位:萬人次)的變化情況,則下列結(jié)論錯誤的是( )
A.2014年我國入境游客萬人次最少
B.后4年我國入境游客萬人次呈逐漸增加趨勢
C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次
D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為解決城市的擁堵問題,某城市準(zhǔn)備對現(xiàn)有的一條穿城公路MON進行分流,已知穿城公路MON自西向東到達城市中心點O后轉(zhuǎn)向東北方向(即).現(xiàn)準(zhǔn)備修建一條城市高架道路L,L在MO上設(shè)一出入口A,在ON上設(shè)一出入口B.假設(shè)高架道路L在AB部分為直線段,且要求市中心O與AB的距離為10km.
(1)求兩站點A,B之間距離的最小值;
(2)公路MO段上距離市中心O30km處有一古建筑群C,為保護古建筑群,設(shè)立一個以C為圓心,5km為半徑的圓形保護區(qū).則如何在古建筑群C和市中心O之間設(shè)計出入口A,才能使高架道路L及其延伸段不經(jīng)過保護區(qū)(不包括臨界狀態(tài))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某濕地公園內(nèi)有一條河,現(xiàn)打算建一座橋?qū)⒑觾砂兜穆愤B接起來,剖面設(shè)計圖紙如下:
其中,點為軸上關(guān)于原點對稱的兩點,曲線段是橋的主體,為橋頂,且曲線段在圖紙上的圖形對應(yīng)函數(shù)的解析式為,曲線段均為開口向上的拋物線段,且分別為兩拋物線的頂點,設(shè)計時要求:保持兩曲線在各銜接處()的切線的斜率相等.
(1)求曲線段在圖紙上對應(yīng)函數(shù)的解析式,并寫出定義域;
(2)車輛從經(jīng)倒爬坡,定義車輛上橋過程中某點所需要的爬坡能力為:(該點與橋頂間的水平距離)(設(shè)計圖紙上該點處的切線的斜率),其中的單位:米.若該景區(qū)可提供三種類型的觀光車:①游客踏乘;②蓄電池動力;③內(nèi)燃機動力.它們的爬坡能力分別為米,米,米,又已知圖紙上一個單位長度表示實際長度米,試問三種類型的觀光車是否都可以順利過橋?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com