已知四邊形ABCD是矩形,AB=
2
,BC=
6
,將△ABC沿著對角線AC折起來得到△AB1C,且頂點B1在平面AB=CD上射影O恰落在邊AD上,如圖所示.
(1)求證:AB1⊥平面B1CD;
(2)求三棱錐B1-ABC的體積VB1-ABC
考點:棱柱、棱錐、棱臺的體積,直線與平面垂直的判定
專題:計算題,空間位置關系與距離
分析:(1)利用線面垂直的判定,AB1⊥CD,又AB1⊥B1C,且B1C∩CD=C∴AB1⊥平面B1CD;(2)AB1⊥平面B1CD,AB1即棱錐的高,后算出底面ABC的面積,代人棱錐體積公式計算.
解答: 解:(1)B1O⊥平面ABCD,CD?平面ABCD,
∴B1O⊥CD,又CD⊥AD,AD∩B1O=O
∴CD⊥平面AB1D,又AB1?平面AB1D
∴AB1⊥CD,又AB1⊥B1C,且B1C∩CD=C
∴AB1⊥平面B1CD;           …(6分)
(2)由于AB1⊥平面B1CD,B1D?平面ABCD,∴AB1⊥B1D,
在Rt△AB1D中,B1D=
AD2-AB12
=2,
又由B1O•AD=AB1•B1D 得B1O=
AB1B1D
AD
=
2
3
3
,
∴VB1-ABC=
1
3
S△ABC•B1O=
1
3
×
3
×
2
3
3
=
2
3
…12分
點評:本題考查的知識點是直線與平面垂直的判定,棱錐的體積,其中(1)的關鍵是熟練掌握線面垂直,線面垂直及線線垂直的相互轉(zhuǎn)化,(2)的關鍵是判斷出棱錐的高和底面面積.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設{an}為等差數(shù)列,Sn為數(shù)列的前n項和,S4=20,a1=2,bn=
1
Sn
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個焦點為F1(-2,0)、F2(2,0),點P(3,
7
)在雙曲線C上;
(1)求雙曲線C的方程;
(2)求雙曲線焦點到其漸近線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(1,0,-1),
b
=(-1,1,2).
(Ⅰ)若k
a
+
b
a
-2
b
平行,求k的值;
(Ⅱ)若k
a
+
b
a
+3
b
垂直,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=x3-x2-x+a,a∈R,求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-2ax+2+b(a>0),若f(x)在區(qū)間[0,3]上有最大值10,最小值2.
(1)求a,b的值;
(2)若g(x)=f(x)-mx在[2,4]上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列
1
1×3
1
1×5
,
1
5×7
1
7×9
,…
1
(2n-1)×(2n+1)
,計算S1,S2,S3,由此推測Sn的計算公式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

分別寫出由下列各組命題構成的“p∨q”,“p∧q”,“¬p”形式的復合命題,并判斷他們的真假:p:平行四邊形的對角線相等;q:平行四邊形的對角線互相平分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某地區(qū)為了解高二學生作業(yè)量和玩電腦游戲的情況,對該地區(qū)內(nèi)所有高二學生采用隨機抽樣的方法,得到一個容量為200的樣本統(tǒng)計數(shù)據(jù)如表:
認為作業(yè)多認為作業(yè)不多總數(shù)
喜歡電腦游戲72名36名108名
不喜歡電腦游戲32名60名92名
(I)已知該地區(qū)共有高二學生42500名,根據(jù)該樣本估計總體,其中喜歡電腦游戲并認為作業(yè)不多的人有多少名?
(Ⅱ)在A,B,C,D,E,F(xiàn)六名學生中,但有A,B兩名學生認為作業(yè)多如果從速六名學生中隨機抽取兩名,求至少有一名學生認為作業(yè)多的概率.

查看答案和解析>>

同步練習冊答案