在△ABC中,
AB
=
a
,
AC
=
b
,D是BC的中點,點E在AB上,
BE
=
1
3
BA
,則
ED
=
 
考點:平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:首先,根據(jù)
BE
=
1
3
BA
,
BC
=
AC
-
AB
=
b
-
a
,然后,根據(jù)向量的運算求解.
解答: 解:∵
BE
=
1
3
BA
,
BC
=
AC
-
AB

=
b
-
a

BD
=
1
2
BC
=
1
2
b
-
a
),
ED
=
EB
+
BD

=
1
3
a
+
1
2
b
-
1
2
a

=-
1
6
a
+
1
2
b

故答案為:-
1
6
a
+
1
2
b
,
點評:本題重點考查了向量的基本運算、基本運算律、平面向量基本定理等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=1,an+1=2an+1,則通項an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一根木棒長5米,從任意位置砍斷,則截得兩根木棒都大于2米的概率為(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:設(shè)△ABC中,AD、BE為BC和AC邊上的高,AD、BE交于H點.求證:CH⊥BA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x-2)2+(y-2)2=
17
2
,直線l:x+y-9=0,過l上一點A作△ABC,使∠BAC=45°,邊AB恰過圓心M,且B、C均在圓M上.
(1)當(dāng)點A的橫坐標(biāo)為4時,求直線AC的方程;
(2)求點A橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)直線y=x-A與曲線y=|x|-|x-2|有3個公共點時,實數(shù)A的取值范圍是( 。
A、(2,+∞)
B、[2,+∞)
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的圖象過點(0,4),對任意x滿足f(3-x)=f(x),且有最小值是
7
4
;已知g(x)=2x-m
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函數(shù)h(x)=f(x)-(2t-3)x在區(qū)間[0,1]上的最小值,其中t∈R;
(Ⅲ)若f(x)恒在g(x)=2x-m的上方,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列拋物線的焦點坐標(biāo)和準(zhǔn)線方程:
(1)y2=20x
(2)x2+8y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l的方程為kx-y+1-k=0(k∈R),則直線l與橢圓
x2
9
+
y2
4
=1的交點個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案