已知|
a
|=|
b
|=1向量
a
b
的夾角為120°,且(
a
+
b
)⊥(
a
+t
b
),則實數(shù)t的值為( 。
A、-1B、1C、-2D、2
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應(yīng)用
分析:運用向量的數(shù)量積的定義,求得向量a,b的數(shù)量積,再由向量垂直的條件:即數(shù)量積為0,結(jié)合向量的平方即為模的平方,計算即可得到t.
解答: 解:|
a
|=|
b
|=1,向量
a
b
的夾角為120°,
a
b
=|
a
|•|
b
|•cos120°=1×1×(-
1
2
)=-
1
2

由(
a
+
b
)⊥(
a
+t
b
),
可得(
a
+
b
)•(
a
+t
b
)=0,
即有
a
2
+t
b
2
+(1+t)
a
b
=0,
即1+t-
1
2
(1+t)=0,
解得t=-1.
故選A.
點評:本題考查向量的數(shù)量積的定義和性質(zhì),考查向量垂直的條件,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直角坐標平面上點Q(2,0)和圓C:x2+y2=1,動點M到圓C的切線長與|MQ|的比等于x(x>o),則動點M的軌跡為( 。
A、直線B、圓
C、直線或圓D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(0,1),
b
=(2,-1),
c
=(1,1),則(  )
A、(
a
-
b
)∥
c
B、(
a
-
b
)⊥
c
C、(
a
-
b
)•
c
>1
D、|
a
-
b
|=|
c
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

M(1,1)是方程2ax2+by2=1(a>0,b>0)表示的曲線上的點,則
2
a
+
9
b
最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高二年級某研究性學(xué)習(xí)小組為了了解本校高一學(xué)生課外閱讀狀況,分成了兩個調(diào)查小組分別對高一學(xué)生進行抽樣調(diào)查.假設(shè)這兩組同學(xué)抽取的樣本容量相同且抽樣方法合理,則下列結(jié)論正確的是( 。
A、兩組同學(xué)制作的樣本頻率分布直方圖一定相同
B、兩組同學(xué)的樣本平均數(shù)一定相等
C、兩組同學(xué)的樣本標準差一定相等
D、該校高一年級每位同學(xué)被抽到的可能性一定相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=x2+2ax+2a+1.
(1)若對任意x∈R,有f(x)≥1恒成立,求實數(shù)a的取值范圍;
(2)討論函數(shù)f(x)在區(qū)間[0,1]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標系O-xyz中,一個四面體的頂點坐標為分別為(0,0,2),(2,2,0),(0,2,0),(2,2,2).畫該四面體三視圖中的正視圖時,以xOz平面為投影面,則得到正視圖可以為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(3,1)作圓C:(x-2)2+y2=1的兩條切線,切點分別為A、B,則直線AB的方程為( 。
A、x+y-3=0
B、x-y-3=0
C、2x-y-3=0
D、2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀右邊的算法流程圖(如圖),解答下列問題:
(1)寫出算法輸出的結(jié)果y=f(x);
(2)已知命題p:{x|f(x)≤1};命題q:關(guān)于x的不等式x2-3ax+2a2>0(a>0)的解集,且q是p的必要不充分條件,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案