【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調查,統(tǒng)計數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

(Ⅰ)根據(jù)上表說明,能否有的把握認為,收看開幕式與性別有關?

(Ⅱ)現(xiàn)從參與問卷調查且收看了開幕式的學生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男、女學生各選取多少人?

(ⅱ)若從這8人中隨機選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.

附:,其中.

【答案】(1)見解析;(2)(i) 男生有6人,女生有2人. (ii).

【解析】分析:()因為,所以有的把握認為,收看開幕式與性別有關;()()根據(jù)分層抽樣方法得,男生人,女生; ()人中,選取人的所有情況共有種,其中恰有一名男生一名女生的情況共有種,由古典概型概率公式可得結果.

詳解(Ⅰ)因為,

所以有的把握認為,收看開幕式與性別有關.

(Ⅱ)(ⅰ)根據(jù)分層抽樣方法得,

男生人,女生人,

所以選取的8人中,男生有6人,女生有2人.

(ⅱ)從8人中,選取2人的所有情況共有N=7+6+5+4+3+2+1=28種,

其中恰有一名男生一名女生的情況共有M=6+6=12種,

所以,所求概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)定義在上且滿足下列兩個條件:

①對任意都有;

②當時,有,

(1)求,并證明函數(shù)上是奇函數(shù);

(2)驗證函數(shù)是否滿足這些條件;

(3)若,試求函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某代賣店代售的某種快餐,深受廣大消費者喜愛,該種快餐每份進價為8元,并以每份12元的價格銷售.如果當天19:00之前賣不完,剩余的該種快餐每份以5元的價格作特價處理,且全部售完.

(1)若這個代賣店每天定制15份該種快餐,求該種類型快餐當天的利潤y(單位:元)關于當天需求量x(單位:份,)的函數(shù)解析式;

(2)該代賣點記錄了一個月30天的每天19:00之前的銷售數(shù)量該種快餐日需求量,統(tǒng)計數(shù)據(jù)如下:

日需求量

12

13

14

15

16

17

天數(shù)

4

5

6

8

4

3

以30天記錄的日需求量的頻率作為日需求量發(fā)生的概率,假設這個代賣店在這一個月內每天都定制15份該種快餐.

(i)求該種快餐當天的利潤不少于52元的概率.

(ii)求這一個月該種快餐的日利潤的平均數(shù)(精確到0.1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,點的中點

(1)求證:平面;

(2)若平面 平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩個班級均為40人,進行一門考試后,按學生考試成績及格與不及格進行統(tǒng)計,甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.

(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;

(2)試判斷能否有99.5%的把握認為“考試成績與班級有關”?參考公式: ;n=a+b+c+d

P(>k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓的極坐標方程為.

(1)求直線的普通方程與圓的直角坐標方程;

(2)設動點在圓上,動線段的中點的軌跡為,與直線交點為,且直角坐標系中,點的橫坐標大于點的橫坐標,求點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是亞太區(qū)域國家與地區(qū)加強多邊經濟聯(lián)系、交流與合作的重要組織,其宗旨和目標是“相互依存、共同利益,堅持開放性多邊貿易體制和減少區(qū)域間貿易壁壘.”2017年會議于11月10日至11日在越南峴港舉行.某研究機構為了了解各年齡層對會議的關注程度,隨機選取了100名年齡在內的市民進行了調查,并將結果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,,).

(1)求選取的市民年齡在內的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人參與會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),),.

(1)若函數(shù)上的最大值為1,求的值;

(2)若存在使得關于的不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩家銷售公司擬各招聘一名產品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請將兩家公司各一名推銷員的日工資(單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關系式;

(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為(單位: 元),將該頻率視為概率,請回答下面問題:

某大學畢業(yè)生擬到兩家公司中的一家應聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

同步練習冊答案